本报告介绍了一种量化系统理论,该理论支持基于称为“量化”的过程的预测过滤,以减少状态更新传输。量化系统是具有输入和输出量化器的系统。量化仅在量子级交叉处生成状态更新,将发送方模型抽象为 DEVS(离散事件系统规范)表示。这提供了一种替代的、有效的方法来将连续模型嵌入分布式离散事件模拟中。量化系统理论研究了在何种条件下,DEVS 表示系统的耦合能够很好地表示原始组合。这对应于预测过滤的闭环研究,即发送方和接收方都在暴露彼此的抽象。先前对航位推算精度/性能权衡的分析假设开环分析延续到闭环情况。不幸的是,数值分析的经验表明,反馈相互作用的动态可能会导致产生的误差无限制地增长。量化系统理论提供了同态(无误差)量化预测过滤成为可能的条件。它展示了当条件被违反时如何产生错误,并提出了近似同态的适当概念。讨论了量化在消息流量减少中的应用。该理论已通过模拟得到证实
目标的确定麻醉深度已被用来评估在电击疗法(ECT)中应用电刺激的最佳力矩,因为所使用的某些抗厌含剂可以降低其有效性。在这项研究中,使用患者状态指数(PSI)使用麻醉深度测量来评估癫痫发作质量。方法对对照组进行了前瞻性实验研究,其中包括51例患者的346个刺激样本(PSI = 134;对照= 212),并患有主要抑郁症。癫痫发作的足够变量(电脑图中的癫痫发作时间[EEG]和动物活性,脑电图的视觉评估,ECT-EECT-EEG参数评级量表[EEPRS],癫痫发作一致性,中央抑制,自动抑制,自动化参数和自动激活的局限模型的连续模型是连续的,并具有连续的模型。用于二分法变量。结果PSI组需要较低的刺激能。PSI的使用与持续时间和脑电图,较高的脑电图记录,更好的癫痫发作一致性以及最大持续相干性和峰值相干时间的自动参数的较高值有关。结论使用PSI测量麻醉深度可能会减少所需的电刺激电荷,并证明用丙泊酚修饰的ECT中的癫痫发作质量。
本文对 2021 年 11 月 15 日进行的俄罗斯反卫星 (ASAT) 拦截试验进行了后续分析,该试验发射了一套 ASAT 武器系统来拦截和摧毁在轨的 COMOS 1408,这是一颗已报废的苏联电子情报 (ELINT) 卫星,于 1982 年发射。最初的分析估计了碎片事件产生的碎片将如何对航天器操作员、他们的 SSA 知识、他们检测和缓解高碰撞威胁事件的能力以及他们在大型星座框架内使用机动燃料产生不利影响。本文将这些最初的相遇率预测、对低地球轨道 (LEO) 航天器(尤其是太阳同步轨道上的航天器)的碰撞风险以及轨道寿命估计与运行飞行安全系统和服务检测到的实际会合和轨道寿命进行了比较。对连续模型和离散破碎模型中实际碎片碎片跟踪与碎片体积演变进行了比较。将我们最初的预测与实际情况进行比较,可以发现,最初的 ASAT 碎片轨道寿命预测与迄今为止在轨观测到的寿命非常接近,预测寿命比迄今为止观测到的寿命长约 25%。飞行安全和所需避让机动预测也得到了观测到的结合趋势的验证,俄罗斯 ASAT 试验在某些高度导致飞行安全性和可持续性降低多达 20%,在某些轨道条件下碰撞风险增加一倍。
在处理由多个步骤组成的复杂任务时存在权衡。高级认知过程可以找到在不确定环境中实现目标的最佳动作序列,但是它们很慢,需要大量的计算需求。相比之下,较低级别的处理允许快速对环境刺激做出反应,但能力有限,无法确定最佳作用或在无法满足期望时进行重新启动。通过重申相同的任务,生物生物可以找到最佳的权衡:从动作原始素中,复合轨迹逐渐通过创建特定于任务的神经结构而逐渐出现。主动推理的两个框架 - 最近的大脑范式,将动作和感知视为同样的自由能最小化的势在必行 - 很好地捕获了人类行为的高级和低级过程,但是在这些术语中如何进行任务专业尚不清楚。在这项研究中,我们比较了动态选择任务上的两种策略:具有计划功能的混合(离散连续)模型和具有固定过渡的连续模型。这两个模型都依赖于层次结构(内在和外部)结构,非常适合定义到达和掌握运动。我们的结果表明,仅连续模型的性能更好,并且资源消耗最少,但其灵活性较小。最后,我们提出了离散的动作如何导致连续吸引子并将两个框架与不同的运动学习阶段进行比较,从而为对生物启发的任务适应的进一步研究奠定了基础。
伦敦学院,高尔街,伦敦,WC1E 6BT,英国# 通讯作者:d.duffy@ucl.ac.uk 摘要 预测材料在各种辐照场景下结构变化的能力将对许多科学和技术领域产生积极影响。现有的大型原子系统建模技术(如经典分子动力学)因忽略电子自由度而受到限制,这限制了它们的应用范围,即主要与原子核相互作用的辐照事件。另一方面,从头算方法包括电子自由度,但所需的计算成本限制了它们在相对较小的系统中的应用。旨在克服其中一些限制的最新方法发展基于将原子模型与电子能量连续模型相结合的方法,其中能量通过电子停止和电子-声子耦合机制在原子核和电子之间交换。这种双温度分子动力学模型使得模拟电子激发对具有数百万甚至数亿个原子的系统的影响成为可能。它们已被用于研究金属薄膜的激光辐照、金属和半导体的快速重离子辐照以及金属的中高离子辐照。在这篇综述中,我们描述了双温度分子动力学方法及其实施所需的各种实际考虑。我们提供了该模型在适应电子激发的多种辐照场景中的应用示例。我们还描述了在模拟中包括由于电子激发而引起的原子间相互作用的改变的影响所面临的挑战以及如何克服这些挑战。关键词辐射损伤;双温度模型;分子动力学;电子效应;激光辐照;快速重离子
和连续扩散模型,因为SDE指定的扩散模型可以视为离散模型的连续限制(第3节),并且通过合适的时间离散化从连续模型中获得离散扩散模型(第5.3节)。观点是SDES揭示了模型的结构属性,而离散的对应物是实际的实现。本文的目的是为基于分数的扩散模型的最新理论提供教程,主要是从统计重点的连续角度来看。也将提供离散模型的参考。我们为大多数已陈述的结果绘制证明,并且仅在分析至关重要时才给出假设。我们经常使用“在适当条件”的“在适当条件下”的短语,以避免不太重要的技术细节,并保持简洁和关注点。该论文是对该领域的温和介绍,从业者将发现一些分析对于设计新模型或算法有用。在这里首次出现一些结果(例如,在第5.2、6.2和7.3节中)。由于采用了SDE公式,因此我们假设读者熟悉基本的随机演算。ØKksendal的书[50]提供了一个用户友好的帐户,以进行随机分析,并且更高级的教科书是[34,68]。另请参见[76]有关扩散模型的文献综述,以及[8]进行优化概述,并具有更高级的材料,例如扩散指导和微调。本文的其余部分如下组织。具体示例在第3节中提供了。在第2节中,我们从扩散过程的时间反转公式开始,这是扩散模型的基石。第4节与分数匹配技术有关,这是扩散模型的另一种关键要素。在第5节中,我们考虑扩散模型的随机采样器,并分析其收敛性。在第6节中,确定性采样器 - 引入了概率流,以及其应用于一致性模型。在第7节中给出了分数匹配的其他结果。总结说明和未来的指示在第8节中总结了。
成型和金属切割 模块:1 FEM 的数学基础 6 小时 工程中的一般场问题-离散和连续模型特性-边界值问题的变分公式-最小势能原理-加权残差法-大方程组的解-高斯消元法。 模块:2 FEM 的一般理论 5 小时 FEM 的一般理论-FEM 程序-域离散化-插值多项式的选择-收敛要求-单纯形元素的形状函数。 模块:3 一维结构分析的 FEM 8 小时 弹性问题的元素特征矩阵和向量-元素特征矩阵的组装-边界条件的合并-方程的解-后处理-使用杆、桁架和梁元素解决结构力学问题。 模块:4 二维固体力学的 FEM 6 小时 使用恒定应变可训练和矩形元素进行平面应力、平面应变和轴对称应力分析-自然坐标系和数值积分。模块:5 传热的有限元法 6 小时 考虑传导和对流损失的传热元素方程的制定 - 使用单纯形元素的一维、二维和轴对称稳态传热分析 - 瞬态传热分析简介。 模块:6 非线性有限元法的基本概念 6 小时 非线性问题 - 材料非线性分析 - 几何非线性分析 - 材料和几何非线性组合 - 非线性接触条件。 模块:7 制造业中有限元分析的应用 6 小时 铸件和焊接件凝固的有限元分析 - 特殊考虑、潜热结合 - 案例研究。 金属成型和金属切削的有限元分析、切屑分离标准、应变率依赖性的结合 - 案例研究。 模块:8 当代问题 2 小时 总讲座时长:45 小时 教科书
在拓扑带和异常的大厅晶体最近突破性实验[1-3]中的Skyrmions已鉴定出二维平台中的分数Chern绝缘子阶段。尽管没有外部磁场,但这些阶段破坏了时间转换对称性,并且与著名的分数量子厅效应表现出很强的相似性。他们提出了拓扑平坦带(没有动能)和兰道水平之间的广泛类比[4]。对于一类特定的实验相关带(称为理想频段),甚至在这些频段和常规的Landau级别之间建立了映射。此映射通常将[5]与频带的轨道绕组联系起来,称为Skyrmion,类似于磁系统中的非平凡自旋纹理。这项实习的目的是研究拓扑平坦带中轨道天空的形成。通过求解具有超晶格(Moiré)电势的连续模型,将研究拓扑轨道天空的稳健性,以超出理想情况以外的通用频段。一个目的是探索实际空间和动量拓扑之间的Landau水平二元性如何扩展到真正的拓扑结束。此外,电子相互作用可以稳定具有拓扑特性的Wigner晶体[6]。使用Hartree-fock方法,将研究这种对称性状态的轨道天空纹理。典型的示例将包括扭曲的双层石墨烯,扭曲过渡金属二分法和菱形多层石墨烯的模型。[1] arXiv:2408.12652 [6] Dong, Wang, Vishwanath, Parker, PRL 2024 Please, indicate which speciality(ies) seem(s) to be more adapted to the subject: Condensed Matter Physics: YES Soft Matter and Biological Physics: NO Quantum Physics: YES Theoretical Physics: YES
简介。- 非常规超导性贝尔德(Bey)典型的bardeen-cooper-schrieffer理论显示了丰富的物理现象,包括高温超电导率和拓扑超导性。由多体相互作用引起的各种波动在库珀配对中起着非常规超导性的主要作用,而低维的波动尤其有利。认为,铜酸盐中的高温超导性是由二维抗磁磁波动介导的[1-3]。此外,在基于铁的高温超导体中,Exced s波配对由轨道[4-6]或抗铁磁[7,8]波动介导[9-11]。然而,在Majorana Fermion [16-18]中寻找拓扑超导性[12-15]是现代冷凝物理物理学的一个尚未解决的问题,这归因于以下事实:拓扑超电导率的平台在本质上很少。旋转三键超导体是规范的候选者,预计Ferromag-Netic波动会介导旋转的曲线库珀配对。然而,候选材料仅限于具有三维多个频段的一些重型武器系统[19-26]。在二维各向同性连续模型中,由于状态的恒定密度(DOS),铁磁波动不受青睐,这可能意味着没有二维自旋三个三维超导性。在这封信中,我们提出了一个指导原则,以实现二维的铁磁波动即使对于各向异性晶格系统,大多数准二维超导体也不会显示铁磁波动,抗磁性波动也相当无处不在,正如上面在上面提到的,对于基于库酸盐和铁的化合物。因此,铁磁波动产生的自旋三个超导性有望需要特殊的带结构,并且对材料和理论模型的搜索都在挑战。
在本文中,我们研究了小扭曲角度的TBG的光学传导率和热辐射。我们使用包括200多个平面波的连续模型来实现收敛能带。此方法对很小的角度有效。具有不同扭曲角度的TBG的光导率在数值上由久保公式计算出来。基于先前作品的远场辐射理论[21-23],我们探索了TBG的热辐射特性。TBG的辐射光谱通过改变扭曲角度显示可调的高强度和峰位置。 具有魔法角度,可以调节TBG辐射以在0.05EV至0.08EV范围内集中,这超出了大气透明窗口[24]。 这种电磁(EM)波很难在大气中传播,因此红外(IR)摄像机无法检测到它。 用这种材料制成或覆盖的设备是不可见的。 此类材料也可用于制造纺织品以保持温暖,因为热辐射不太可能通过大气传播。 我们的结果建立了魔法双层石墨烯,作为一个高度可调的平台,可调查隐形和保留温暖的材料。TBG的辐射光谱通过改变扭曲角度显示可调的高强度和峰位置。具有魔法角度,可以调节TBG辐射以在0.05EV至0.08EV范围内集中,这超出了大气透明窗口[24]。这种电磁(EM)波很难在大气中传播,因此红外(IR)摄像机无法检测到它。用这种材料制成或覆盖的设备是不可见的。此类材料也可用于制造纺织品以保持温暖,因为热辐射不太可能通过大气传播。我们的结果建立了魔法双层石墨烯,作为一个高度可调的平台,可调查隐形和保留温暖的材料。