沸石咪唑酯骨架 (ZIF) 生物复合材料显示出保护和输送生物治疗药物的能力。迄今为止,该研究领域的进展是基于实验室批量方法。为了进一步探索 ZIF 生物复合材料在生物医药和生物技术中的应用潜力,需要连续生产特定粒径的 ZIF 生物复合材料。在这里,我们报告了第一种在 ZIF-8 中封装模型蛋白质(牛血清白蛋白,BSA)和临床治疗药物(α1-抗胰蛋白酶,AAT)的连续流合成方法。我们通过小角度 X 射线散射研究了 BSA@ZIF-8 的成核、生长和结晶的原位动力学。通过控制乙醇的注入时间,我们可以通过乙醇诱导的从无定形颗粒到 ZIF-8 晶体的结晶来抑制颗粒生长。通过在引入乙醇之前改变停留时间,将生物复合材料的粒径调整在 40-100 纳米范围内。作为概念验证,我们使用此协议将 AAT 封装在 ZIF-8 中。从复合材料中释放生物治疗剂后,AAT 的胰蛋白酶抑制剂功能得以保留。
碳点(CD)由于其在高价值应用中的独特特性,在科学界引起了人们的兴趣。目前,主要问题是它们的扩大合成,以及对其生产和应用的反应条件的控制。连续流(CF)化学和技术可以是克服这些问题的有价值的解决方案,从而可以精确控制对关键合成参数的可再现和生产力。cf合成可以导致具有更容易可调和可控制特性的纳米颗粒(即较窄的尺寸分布和更高的量子产率)。此外,CF的较小环境影响和高效率可以为碳纳米材料的大规模生产和应用铺平道路。例如,超临界水是在很短的时间内执行CD合成CF的有前途的反应培养基。本综述展示了CF制备的CF程序,它们在CF光催化和其他利基用途中的应用,并就该领域的未来观点提供了一些想法。
80BuMeIm ClBuMe Pyrr BrBu-Im BuSO4BuMePyr BF4BuMe Im PF6TBA HSO4HTA-11-Bu-pyr BrOct4N BrTBABMePPh3 I1-n-Bu 吡啶 Br1-Bu-1-Me 吡咯烷…DIPEA HBr1-Bu-4-Mepyridinium BF4TBABDBU + HOAcMePPh3 IMePPh3 ClCaBr2TBA ClTBA ITBA BrTBA HSO4TBA OAcTBA FDBU HOAcDBU 乳酸DBU HBrDBU HClDBU HOPCHO-Et-DBU BrEt-DBU BrTBA PO4Et4N BrBu4N BrDBU-HOAc 原位DBU TFADBU Otf
反应成分并防止流动管的降水,堵塞或结垢。7溶剂的教条使用 - 并且通常是不希望的有毒溶剂(例如DCM和DMF),已经建立了一种现状,其中合成化学家是合成的事实,其分子输入的大部分是对反应瓶(溶剂)的大部分输入(溶剂),最终是直接或间接地 - 直接或间接地 - 对原子质造成的含量。8可持续性指标的重要性越来越重要,例如原子经济,电子因素,过程质量强度以及工业路线设计和开发中的时空产量,9使研究人员能够详细研究“所需的输出”/““废物”二分法,因为在散装溶解中的使用在这些后两者中都具有重要的作用。因此,从反应培养基中完全消除它们的机会 - 从可持续化学的角度来看,将它们完全从反应培养基中删除的机会是非常相关的。10
连续流状态的结束(45-60 公里)。在更高的海拔高度,滑移流之后依次是中间和自由分子流状态 停滞点 流动停止的点(流体速度为 ero)
摘要 本研究的目的是报告确定连续流人工心室患者血压的程序。这是一项经验报告类型的描述性、探索性研究。专业的、基于证据的实践表明,接受过培训的护理人员可对使用持续流人工心室的患者执行此项手术。连续流泵机制改变了血压检查机制,因为它改变了脉动的存在。对于此类患者,最推荐的非侵入性技术是使用血管多普勒检查平均动脉压。因此,近年来,人工心室的使用作为我们环境中的一种治疗替代方案而日益增多,并且需要特殊的护理,测量压力就是其中之一,并且非常重要。这项研究使我们能够列出对专业人员和患者的护理和指导。关键词:辅助心脏;测定血压;高级护理实践;护理教育。摘要 本研究的目的是报告确定持续流人工心室患者血压的程序。这是一项描述性、探索性、经验报告类型的研究。专业且基于证据的专业实践表明,经过之前培训的护理团队可以在使用连续流人工心室的患者中执行该程序。连续流泵机制改变了血压验证机制,因为它改变了脉动的存在。对于此类患者,最推荐的非侵入性技术是使用血管多普勒来验证平均动脉压。因此,近年来,人工心室的使用作为我们环境中的一种治疗替代方法正在增加,并且需要特殊的护理,压力测量就是其中之一,并且非常重要。这项研究列出了对专业人员和患者的护理和指导。关键词:心脏辅助装置;测定血压;高级实践护理;护理教育。
(57) 摘要:公开了使用序批反应器处理废水的方法。该方法包括确定废水的预期流速,并响应于预期流速以连续流模式独立操作一个或多个反应器。还公开了序批反应器系统。该系统包括多个并行操作的反应器、装载子系统、测量子系统和控制器。控制器可以配置为响应于预期流速以批流模式或连续流模式独立操作每个反应器。还公开了改造现有序批反应器系统的方法和使用序批反应器系统促进废水处理的方法。
BioMEMS 组,IEMN(UMR 8520 - 法国里尔北部大学)*BP 60069,Avenue Poincaré,59652 Villeneuve d'Ascq cedex,法国 – vincent.senez@isen.fr 摘要:本文介绍了一种使用无源阀门的模拟数字微流体转换器 (ADMC),能够将连续液体流转换为液滴,以实现介电电润湿 (EWOD) 驱动。使用 COMSOL Multiphysics 的微流体应用模式优化了阀门校准、几何特性和损耗减少。关键词:EWOD、片上实验室、微流体。1. 简介微流体装置可以处理微量液体,无论是微通道中的连续流还是疏水表面上的液滴。到目前为止,大多数片上实验室 (LOC) 只采用这两种技术中的一种实现。然而,通过与微电子系统类比,人们很容易理解,根据操作的不同,这两种技术都有各自的优点和缺点。因此,必须研究能够将连续流转换为液滴,反过来,能够将液滴转换为连续流的系统。借助使用 COMSOL Multiphysics 的数值模拟,我们设计了一个模拟(连续流)到数字(液滴位移)微流体转换器 (ADMC)。本文的第二部分介绍了数值模型及其校准,第三部分专门介绍 ADMC 的设计和模拟分析。
总结我的博士项目着重于使用高级材料开发用于工业废水处理的创新解决方案。我们通过将聚合物与磁性纳米颗粒融合,并在生物炭支撑。这些材料将在连续流系统中进行测试,以复制现实世界的工业场景。目标