归因4.0国际(CC BY 4.0)此工作可根据创意共享归因4.0国际许可提供。通过使用这项工作,您可以接受该许可条款的约束(https://creativecommons.org/licenses/4.0/)。归因 - 您必须引用工作。翻译 - 您必须引用原始作品,确定对原始文本的更改,并添加以下文本:如果原始作品和翻译之间有任何差异,则仅应将原始作品的文本视为有效。改编 - 您必须引用原始作品并添加以下文本:这是经合组织对原始作品的改编。本适应中表达的意见和论点不应报告为代表经合组织或其成员国的官方观点。第三方材料 - 许可证不适用于工作中的第三方材料。如果使用这种材料,则负责获得第三方的许可以及任何侵权索赔。未经明确许可,您不得使用经合组织徽标,视觉标识或封面图像,也不得建议经合组织认可您对工作的使用。根据本许可引起的任何争议均应按仲裁根据2012年常任仲裁法院(PCA)仲裁规则解决。仲裁的所在地应为巴黎(法国)。仲裁员的数量应为一个。
在本文中,我们在超薄的磁合金和多层上,在不透明的SI底物上应用桌面,超快,高谐波生成(HHG)来测量元素特异性铁磁共振(FMR)。我们证明了连续的波带宽高达62 GHz,并承诺将其扩展到100 GHz或更高。该实验室规模的仪器使用超快,极端粉状物(EUV)的光检测FMR,光子能量跨越了最相关的杂志元素的M-边缘。射频频率梳子发生器用于产生微波激发,该微波激发本质上同步与EUV脉冲,其正时抖动为1.1 ps或更高。我们应用该系统来测量多层系统以及Ni-FE和Co-FE合金中的动力学。由于该仪器以反射模式运行,因此它是测量和成像磁态动力学和主动设备在桌面上任意基板上的自旋传输的里程碑。较高的带宽还可以测量具有高磁各向异性的材料,以及纳米结构或纳米电视中的铁磁体,抗铁磁铁和短波长(高波形)自旋波。此外,EUV的相干性和短波长将能够使用动态纳米级无透镜成像技术(例如相干差异成像,Ptychography和全息图)扩展这些研究。
在过去的 20 年里,教育和技术这个广阔的领域中出现了一系列学科。自 20 世纪 80 年代初以来,人工智能与教育(AIED)这个广阔的领域应运而生,旨在结合人工智能(AI)、学习理论和教育实践来改善学习者使用计算机的学习成果(Boyd 等人,1982 年;Holmes 等人,2019 年)。在 AIED 领域中,基于计算和机器学习的力量出现了各种研究子领域,例如智能辅导系统(Aleven 和 Koedinger,2002 年)、自适应超文本系统(Eysink 等人,2009 年;Romero 等人,2009 年)和计算机支持的协作学习(CSCL)。自 20 世纪 90 年代初以来,出现了一系列 CSCL 出版物,探讨学习者和教师如何使用计算机在线协作。大量 CSCL 研究(例如 Gunawardena,1995 年;Roschelle 和 Koschmann,1996 年;Fischer 和 Mandl,2005 年;Rienties 等,2009 年)发现,支架、自我调节、任务设计和教学临场感是鼓励学习者有效合作的重要概念。2000 年代中期,第三批研究人员(例如 Baker 和 Yacef,2009 年;Rosé 等,2014 年)开始使用教育数据挖掘 (EDM),利用更大的数据集和增加数据之间的互连来探索学习过程。自 2011 年以来,出现了第四个研究领域,即学习分析 (LA),它专注于理解复杂的
摘要:在这项工作中,我们引入了一种新颖的连贯的完美吸收器,通过强调通过使用不对称石墨烯元素的宽带宽度,厚度减小,可调性和直接设计来突出其新颖性。此设计均包含在硅基板两侧排列的正方形和圆形石墨烯贴片。具有优化的结构设计,该吸收器始终在1.65至4.49 THz的频率范围内捕获超过90%的传入波,而石墨烯费米水平为0.8 eV,整个设备的测量仅为1.5 um。这使我们的吸收器比以前的设计更有效和紧凑。通过将元表面的几何设计与石墨烯费米水平相结合,可以显着增强吸收器的有效性。可以预料,这种超薄的宽带连贯的完美吸收装置将在出现的芯片上通信技术中起着至关重要的作用,包括光调节器,光电探测器等。
摘要在过去的二十年中,Schwarzschild时空中对Quanblyness的探索引起了人们的兴趣,尤其是关于Hawking Radia对量子相关性和量子相干性的影响。在这个基础上建立,我们调查了鹰辐射影响最大转向连贯性(MSC) - 一种关键措施,以衡量通过转向产生连贯性的能力。我们发现,随着鹰温度的升高,物理上可访问的MSC降解,而MSC无法访问则增加。该观察结果归因于对所有双骨模式的初始量子相关性的重新分布,这是惯性观察者所认识到的。尤其是,我们发现在鹰式温度倾向于限制的情况下,可访问的MSC等于1 /√< / div>
1个国家主要实验室,物理与电子科学学院,东中国师范大学,上海200241,200241,中国2,高力量激光与物理学的主要实验室,上海光学与精美机械学院,中国科学学院,上海学院计算成像,中心ÉnergieMat'eriauxt´el'Ecommunications,Institut National de la Recherche Scientifique,Varennes,Qu´ebec J3X1S2,加拿大5,加拿大5个数学科学学院,中国电子科学与技术大学,中国611731,CHENGDU 611731,611731,COMPROTIAN INNINNOV INNBERID CEMPRETINC 7东中国师范大学和山东师范大学,东中国师范大学,上海,200241年,联合研究中心科学和光子综合芯片
该报告通过应用来分析IC芯片组的全球市场,将市场分解为CWDM/DWDM,以太网,光纤频道,FTTX,无线Fronthaul,AOC,AOC,AEC,AEC,AEC和EOM段。PAM4芯片作为机载重新计时器。它还包括一个数据库,其中包含2021 - 2023年历史数据的数据库和2024-2029的货物预测,平均销售价格和IC芯片集的平均销售价格和销售收入,这些芯片套件按使用类型的收发器或其他模块排序。它还包括高速光学接口IC的领先供应商和众多中国IC公司的资料,以该市场为目标。
我绘制的研究是两项具有巨大重要性的研究 - 现实的玛金(26)和一些具有真实魔术的科学冒险(5)。 这些作品明确地表明了无条件的爱在心理现象中所发挥的至关重要的作用,例如直观的感知和集中意图。 在后者中,威廉·蒂勒(William Tiller)和他的同事(5)记录了集中意图如何在心脏连贯性的信封中coco骨时如何诱导物理现实的变化。 这提示了量子真空中订单的“新”维度的创建,还可以访问其巨大的“自由”能量存储,从而为变化提供动力。 电生理证据表明,这是一种超相干状态,在ECG频谱中,它可以通过多尺度纠缠延伸到量子结构域。我绘制的研究是两项具有巨大重要性的研究 - 现实的玛金(26)和一些具有真实魔术的科学冒险(5)。这些作品明确地表明了无条件的爱在心理现象中所发挥的至关重要的作用,例如直观的感知和集中意图。在后者中,威廉·蒂勒(William Tiller)和他的同事(5)记录了集中意图如何在心脏连贯性的信封中coco骨时如何诱导物理现实的变化。这提示了量子真空中订单的“新”维度的创建,还可以访问其巨大的“自由”能量存储,从而为变化提供动力。电生理证据表明,这是一种超相干状态,在ECG频谱中,它可以通过多尺度纠缠延伸到量子结构域。
自由电子激光器(FEL)设施的激光优化是一项耗时且具有挑战性的任务。不是由经验丰富的运营商手动操作,而是实施机器学习算法为FEL激光优化提供了快速且适应性的方法。最近,在真空紫外线设施-Dalian Cooherent Light Source(DCLS)上进行了这样的实验。已采用了四种算法,即标准和基于神经网络的遗传算法,深层确定性的策略梯度和软演员评论家加强学习算法,通过优化电子束轨迹来增强FEL强度。这些算法在增强FEL激光方面表现出显着的功效,尤其是仅在大约400次迭代范围内实现了收敛的增强学习。这项研究证明了机器学习算法用于FEL激光优化的有效性,从而提供了关于DCL自动操作的前瞻性观点。
Baumgratz,Cramer和Plenio建立了一个严格的框架(BCP框架),以量化量子状态的共同点[Phys。修订版Lett。 113,140401(2014)]。 在BCP框架中,如果量子状态在固定的正交基础上为对角线,则称为量子状态,并且连贯性度量应满足某些条件。 在固定的正常基础上,如果量子状态ρ的虚拟部分非零,则ρ必须是连贯的。 如何定量地表征这一事实? 在这项工作中,我们表明,如果C在州复杂的共轭下不变,即C(ρ)= C(ρ)= C(ρ∗),则BCP框架中的任何相干度量C具有属性c(ρ) - c(reρ)≥0。 如果C不满足C(ρ)= C(ρ∗),我们可以定义一个新的相干度量C'(ρ)= 1Lett。113,140401(2014)]。在BCP框架中,如果量子状态在固定的正交基础上为对角线,则称为量子状态,并且连贯性度量应满足某些条件。在固定的正常基础上,如果量子状态ρ的虚拟部分非零,则ρ必须是连贯的。如何定量地表征这一事实?在这项工作中,我们表明,如果C在州复杂的共轭下不变,即C(ρ)= C(ρ)= C(ρ∗),则BCP框架中的任何相干度量C具有属性c(ρ) - c(reρ)≥0。如果C不满足C(ρ)= C(ρ∗),我们可以定义一个新的相干度量C'(ρ)= 1