摘要 我们研究了具有多个非阿贝尔强对称性的开放量子系统的零空间退化。通过将这些对称性的希尔伯特空间表示分解为涉及多个交换不变子空间的直接和的不可约表示,我们推导出稳态退化的严格下限。我们将这些结果应用于开放量子多体系统,并给出了三个说明性示例:全连通量子网络、XXX Heisenberg 模型和 Hubbard 模型。我们发现,在 SU(2) 对称情况下,导出的边界在系统尺寸上至少以立方级缩放,通常是饱和的。此外,我们的工作为具有非阿贝尔对称性的 Liouvillian 的系统块分解提供了一种理论,从而降低了对这些对象进行对角化所涉及的计算难度,并将自然的物理结构暴露给稳定状态——我们在示例中观察到了这一点。
摘要 我们研究了具有多个非阿贝尔强对称性的开放量子系统的零空间退化。通过将这些对称性的希尔伯特空间表示分解为涉及多个交换不变子空间的直接和的不可约表示,我们推导出稳态退化的严格下限。我们将这些结果应用于开放量子多体系统,并给出了三个说明性示例:全连通量子网络、XXX Heisenberg 模型和 Hubbard 模型。我们发现,在 SU(2) 对称情况下,导出的边界在系统尺寸上至少以立方级缩放,通常是饱和的。此外,我们的工作为具有非阿贝尔对称性的 Liouvillian 的系统块分解提供了一种理论,从而降低了对这些对象进行对角化所涉及的计算难度,并将自然的物理结构暴露给稳定状态——我们在示例中观察到了这一点。
向数字时代的转变增加了对企业,政府和人员的连通性的依赖。安全连通性对于实现日常操作以及确保关键基础架构系统的生存能力,例如电网和通过数字网络连接和控制的财务系统的生存能力。但是,全球相互联系的特征是不断增加的超连接性大趋势,这意味着连通性的破坏可能会带来深远的后果。的确,主权,安全和弹性的连通性对于确保我们全球安全和经济体系的持续运作至关重要。面对增加网络威胁,并在对传统沟通渠道中断的情况下实现有效的紧急响应和沟通,这一点尤其重要。今天,欧盟已经通过为Iris²的发展提出雄心勃勃的计划来应对这些挑战:新型的基于太空的安全连通系统。
意识经常被描述为一种复合现象,仍然代表了主要的科学挑战之一。一开始,已经做出了许多努力,以找到意识的神经解剖学相关性。不幸的是,这并不那么简单。意识是一个过程,而不是一个物体,其主要特征是“尽管面对来自不同意义的器官的多样性印象,但“一个人的意识是成为一个统一的人”(Smythies等人,2013年)。是神经振荡理论(Seth and Bayne,2022年)。可能是提供过程本身的最佳描述的一种。反之亦然,破坏了这些过程,即功能断开连接,起着意识障碍的发病机理的关键作用(DOC)(Fernández-Espejo等,2012)。在这项系统的综述中,我们收集了有关意识障碍患者的连通性连通性功能失调的证据。
我们针对定义在强连通有向图(有向图)顶点上的函数引入了一种新颖的谐波分析,其中随机游走算子是其基石。首先,我们将随机游走算子的特征向量集视为有向图上函数的非正交傅里叶型基。我们通过将从其狄利克雷能量获得的随机游走算子的特征向量变化与其相关特征值的实部联系起来,找到了一种频率解释。从这个傅里叶基开始,我们可以进一步进行并建立有向图的多尺度分析。我们提出了一种冗余小波变换和抽取小波变换,分别作为有向图的谱图小波和扩散小波框架的扩展。因此,我们对有向图的谐波分析的发展使我们考虑应用于有向图的半监督学习问题和图上的信号建模问题,突出了我们框架的效率。
摘要:由于脑肿瘤差异性很大,自动分割仍然是一项艰巨的任务。我们提出了一种通过整合深度胶囊网络 (CapsNet) 和潜在动态条件随机场 (LDCRF) 来自动分割脑肿瘤的方法。该方法包括三个主要过程来分割脑肿瘤——预处理、分割和后处理。在预处理中,N4ITK 过程涉及在归一化强度之前校正每个 MRI 图像的偏置场。之后,在分割过程中使用图像块来训练 CapsNet。然后,在确定 CapsNet 参数后,我们使用轴向视图中的图像切片来学习 LDCRF-CapsNet。最后,我们使用一种简单的阈值方法来校正某些像素的标签,并从分割结果中删除小的 3D 连通区域。在 BRATS 2015 和 BRATS 2021 数据集上,我们训练并评估了我们的方法,发现它表现优异,可以在类似条件下与最先进的方法相媲美。
国际电信联盟(ITU)是联合国负责信息通信技术(ICT)的专门机构,与 193 个成员国和 900 多家公司、大学以及国际和区域组织成员共同推动 ICT 创新。ITU 成立于 1865 年,已有 150 多年的历史,是一个政府间机构,负责协调全球无线电频谱的共享使用、促进卫星轨道分配方面的国际合作、改善发展中国家的通信基础设施以及制定促进各种通信系统无缝互联的全球标准。从宽带网络到尖端无线技术、航空和海上导航、射电天文学、海洋学和卫星地球监测以及融合固定和移动电话、互联网和广播技术,ITU 致力于连通世界。ITU 通过其三个部门履行这一基本使命:无线电通信部门(ITU-R)、电信标准化部门(ITU-T)和电信发展部门(ITU-D)。
背景:R编程语言(一种有效的开源数据分析和可视化工具)可以显着增强生物信息学研究。,它易于访问和强大的社区支持,R使研究人员和学生在低资源环境中受益。生物信息学是一个复杂的领域,需要在数学科学,计算机科学,生物科学和工程上以及基本基础设施(例如有效的计算设施和高速互联网)方面的专业知识。尽管许多生物信息学方法依赖于基于用户的Web的工具,但由于连通性问题,计算功率限制以及缺乏熟练的人员,这些工具可能会在资源有限的设置中挣扎。在南非,由于资金不足,在种族隔离期间被边缘化的机构通常继续面临研究能力的挑战。本研讨会旨在为参与者提供生物信息学应用的R基本技能,使他们能够进行研究并为科学进步做出贡献。
高级数据分析是用于精确农业和智能农业技术的变革解决方案。这些技术可实现连续有效的耕作操作,并在逐个工厂水平上提供详细的监控,从而优化资源使用并减少环境足迹。技术进步导致了各种机器人系统的发展,包括农业抓地力和自主机械,这些机械是从播种到收割的农业任务自动化不可或缺的一部分。但是,采用此类技术并非没有挑战。高初始投资成本,连通性问题和数据安全是需要解决的一些障碍。降低运营成本,提高农作物质量和提高农业产量的潜在收益使其成为农业未来的有前途解决方案。在本文中,我们通过探索技术进步和广泛采用的挑战来讨论机器人技术在现代农业中的多面作用。关键字:农业生产力;人工智能(AI);农业自动化;机器人技术;
利用 Lehmann-Symanzik-Zimmermann 约化公式,我们提出了一种新的通用框架,用于以完全非微扰的方式使用量子计算机计算量子场论中的散射振幅。在这个框架中,只需要构建零动量的单粒子状态,不需要入射粒子的波包。该框架能够结合束缚态的散射,非常适合涉及少量粒子的散射。我们预计该框架在应用于独有的强子散射时会具有特殊优势。作为概念证明,通过在经典硬件上进行模拟,我们证明了在单味 Gross-Neveu 模型中,从我们提出的量子算法中获得的费米子传播子、连通费米子四点函数和费米子-反费米子束缚态的传播子具有实现 Lehmann-Symanzik-Zimmermann 约化公式所必需的所需极点结构。