摘要 — 预计大型储能设施 (ESF) 将成为未来能源市场的重要组成部分,以增加可再生能源的渗透率。本文开发了一种新的优化算法,以参与大型商业 ESF 应对可再生能源波动。ESF 是一家投资者所有并独立运营的公司,力求最大化其总利润,同时对冲系统净负荷变化。为此,设想了一种精确计算高效的双层混合整数线性规划 (MILP)。ESF 运营商试图在较高级别最大化自己的利润,而 ISO 则寻求在较低级别出清市场。原则上,ESF 将能够构建其竞价/报价曲线以从不同市场购买/出售。为了保持问题的可处理性,每个较低级别都被其 KKT 最优条件取代,并使用强对偶理论将非线性转换为线性等价物,从而呈现单级 MILP,并因此重铸为 MPEC。此外,根据信息差距决策理论(IGDT)工具构建了所提出的框架,以捕捉不确定性对 ESF 利润的不利影响。
我们研究了通过定向能量沉积 (DED) 获得的 Fe-Fe 2 Ti 共晶微观结构,其过共晶成分为 Fe-17.6 at.% Ti。实现了低至 200 nm 的超细层状间距,这种特性只能通过吸铸等方法在薄样品中获得。然而,在层间边界 (ILB) 处观察到主要 Fe 2 Ti 相的球状形态,并带有 Fe 相的晕圈。因此,对于给定的 DED 条件,晶体结构在 ILB 上是不连续的。二维和三维分析方法都用于量化微观结构,包括高分辨率同步全息 X 射线计算机断层扫描 (HXCT)。通过相场建模,针对选定的成核场景和从共晶到过共晶的合金成分,探索了共晶系统在定性对应于激光增材制造条件下的一般行为。虽然模拟提供了有关微观结构形成的宝贵见解,但模拟指出,我们需要进一步加深对增材制造条件下熔化的理解,以便实施合适的成核和/或自由生长模型。模拟还表明,使用精确的共晶合金成分可以防止球状 ILB。
我们研究了通过定向能量沉积 (DED) 获得的 Fe-Fe 2 Ti 共晶微观结构,其过共晶成分为 Fe-17.6 at.% Ti。实现了低至 200 nm 的超细层状间距,这种特性只能通过吸铸等方法在薄样品中获得。然而,在层间边界 (ILB) 处观察到主要 Fe 2 Ti 相的球状形态,并带有 Fe 相的晕圈。对于给定的 DED 条件,晶体结构在 ILB 上是不连续的。二维和三维分析方法都用于量化微观结构,包括高分辨率同步全息 X 射线计算机断层扫描 (HXCT)。通过相场建模探索了在定性对应于激光增材制造条件下共晶系统的一般行为,适用于选定的成核场景和从共晶到过共晶的合金成分。虽然模拟提供了有关微观结构形成的宝贵见解,但模拟指出,我们需要进一步加深对增材制造条件下熔化的理解,以便实施合适的成核和/或自由生长模型。模拟还表明,使用精确的共晶合金成分可以防止球状 ILB。
摘要:本文利用美国联邦航空管理局提供的交通流量管理系统 (TFMS) 特定航线固定翼飞机轨迹公共数据集,测量了六种轨迹预测模型的两个主要因素,包括回归准确性和对抗攻击鲁棒性。从基本的常规到高级的深度学习,六种数据驱动的回归器及其所需的架构,从其预测轨迹的准确性和可靠性方面进行了探索。本文的主要贡献是针对飞机轨迹问题描述了对抗样本的存在,本文将其重铸为回归任务。换句话说,虽然数据驱动算法是目前最好的回归器,但它们可能会受到对抗样本的攻击。对抗样本类似于训练样本;然而,它们会导致经过精细训练的回归器做出错误的预测,这对基于学习的轨迹预测算法构成了安全隐患。结果表明,尽管基于深度学习的算法(例如长短期记忆 (LSTM))相对于传统分类器(例如支持向量回归 (SVR))具有更高的回归准确度,但它们对精心设计的状态更敏感,这些状态可以被精心操纵,甚至可以将其预测状态重定向到不正确的状态。这一事实对飞机构成了真正的安全问题,因为对抗性攻击可以重新
为探索节约能源、促进能源再生的途径,本文介绍了新型高熵合金材料的合成及其在能源转换与储存方面的应用。通过分析其高强度、抗回火、抗软化等性能,制备了一种新型高熵合金材料。根据其微观组织和铸态组织,研究了新型高熵合金的电化学性能。实验结果表明,与FeSn2相比,新型高熵合金材料在循环充电过程中的容量、电化学性能、容量稳定性和倍率均具有较大优势;在较低的退火温度下,实心Co纳米颗粒在纳米尺度上通过kirkentel效应进一步转变为空心Co3O4纳米球。 NC-Co 3 O 4 纳米复合材料作为锌空气电池阴极表现出优异的 OER 和 ORR 性能:低过电位 352 mv、高初始还原电位 0.91 v 和半波电位 0.87 v、高开路电压 1.44 v、电容 387.2 mah/g 和优异的循环稳定性。来自高熵合金-74 的 Nico 双金属磷化物纳米管是有效的水分解电催化剂。
摘要 氧化石墨烯 (GO) 涂层电极为酶促葡萄糖传感提供了极好的平台,这种传感是由葡萄糖氧化酶和电化学转导引起的。本文中,我们表明,将 GO 与壳聚糖 (GO + Ch) 混合后,GO 层对葡萄糖检测的灵敏度会加倍,如果利用壳聚糖与 GO (GO−Ch) 的共价结合,灵敏度会增加八倍。此外,复合材料 GO−Ch 的电导率适用于电化学应用,而无需 GO 还原,而这通常是 GO 基涂层所必需的。通过标准羧酸活化/酰胺化方法利用壳聚糖丰富的氨基侧链实现 GO 的共价改性。通过与使用未活化 GO 作为前体实现的临时合成对照样品进行比较,证明了功能化的成功。复合材料 GO−Ch 通过滴铸法沉积在标准丝网印刷电极上。与壳聚糖-GO 混合物和纯 GO 相比,结果表明,由于酶结合位点数量多和羧酸活化合成步骤中 GO 的部分还原,葡萄糖电化学响应具有更高的可靠性和效率。
摘要:锂离子电池电极通常是通过泥浆铸造来制造的,浆液铸造涉及在溶剂中混合活性材料颗粒,导电碳和聚合物粘合剂,然后在电流收集器(Al或Cu)上铸造并烘干涂层(AL或CU)。这些电极的功能性,但在孔网络渗透,电子连接性和机械稳定性方面仍然有限,导致循环时电子/离子电导率和机械完整性较差,从而导致电池降解。为了解决这个问题,我们通过静电纺丝和热解的结合来制造类似毛状的碳 - 铁织物。与浆液铸fe 2 O 3和基于石墨的电极相比,对于半细胞和完整的细胞测试,碳 - 铁织物(CMF)电极提供了增强的高速容量(10C及以上)和稳定性(后者均具有标准锂镍含量镍含量的含量含量液化液含量含量液化液含量(LNMO))。此外,CMF是独立且轻巧的;因此,未来的研究可能包括将其缩放为小袋细胞的阳极材料和18,650个圆柱电池。关键字:锂离子电池,碳 - 金属织物,电纺,独立电极,电流收集器
摘要:(1)背景:组织模型可以提供一种严格、可重复且方便的方法来评估光学传感器的性能。本研究描述了血管头部/脑模型的开发、特性和评估。(2)方法:该方法包括开发大脑和颅骨的模铸和 3D 打印解剖模型以及用于模拟大脑血液动力学变化的定制体外血液循环系统。将开发的模型的光学特性与文献值进行了比较。还加入了人工脑脊液来引起颅内压的变化。(3)结果:成功开发了一种新型头部模型,以模拟大脑和颅骨的解剖结构及其在近红外范围(660-900 nm)内的光学特性。所开发的循环系统模拟正常动脉血压值,平均收缩压为 118 ± 8.5 mmHg,舒张压为 70 ± 8.5 mmHg。同样,脑脊液循环允许颅内压在 5 至 30 mmHg 之间进行受控变化。成功获取了来自模型脑动脉的多波长脉动光信号(光电容积图 (PPG))。结论:这种独特的头部模型技术为研究脑脉动光信号与颅内压和脑血流动力学变化之间的关系奠定了基础。
摘要:聚乙烯二氟(PVDF)扩展的石墨(EXGR)纳米复合材料已通过溶液混合和熔融加工方法制备。在存在聚乙烯基吡喃酮(PVP)的情况下,石墨纳米片(GNSS)在PVDF矩阵中的分散体增强,如田间发射扫描电子显微镜分析所暗示的,导致非常低的电溶解率(0.3 wt%EXGR)。X射线衍射,傅立叶变换红外光谱和差异扫描Calorim-etry(DSC)分析证实了电活性伽玛和非极性α相的共存。与GNSS周围的PVP链包裹可降低PVDF-EXGR纳米复合材料中的结晶度,而DSC分析证明,与整洁的PVDF膜相比。热重分析证实,PVDF-EXGR纳米复合材料在500°C以上的热稳定性增强,主要归因于PVP辅助的GNSS分散体。与整洁的PVDF膜相比,溶液混合PVDF-EXGR纳米复合膜的水接触角在有或没有PVP的情况下增加。与溶剂铸膜相比,压缩式PVDF-EXGR纳米复合材料还表现出PVDF的电活性伽玛和非极性α阶段,其电导率的降低。
游行和退场学生们从下午 3:30 开始排队参加游行,游行大约在下午 4:35 开始(典礼本身在下午 5:00 开始)。游行队伍从哈灵顿礼堂出发,穿过校园,穿过厄尔桥,沿着人行道经过奥尔登纪念碑,移到巴特利特中心后面的人行道上,在骄傲的山羊雕像处转弯,然后沿着帐篷下的中央过道前进。典礼结束时,游行队伍沿着中央过道前进,集体前往巴特利特中心。请来宾不要阻碍游行或退场的进程。保持中央过道畅通尤为重要,以便游行队伍可以往返于座位。担任毕业典礼荣誉司仪的是社会科学与政策研究教授、2023 年杰出研究与创意奖学金受托人奖获得者 Jeanine Skorinko。她手拿的接力棒是 WPI 创始人 John Boynton 的手杖。王校长佩戴校长奖章,WPI 印章以银铸,所有 16 位校长的姓名和服务年限都刻在构成链条的小银板上。教务长 Soboyejo 手持学术权杖,这是一根 42 英寸长的权杖,由凹槽樱桃木制成,顶部有一个圆形银色底座,上面放着一枚大银牌,两侧都有 WPI 印章。