耳穴疗法耳穴疗法是一种古老的技术,最初用于治疗背痛。20 世纪 40 年代,法国内科医生 Paul Nogier 博士重新发现了这项技术,他假设耳朵包含了头部朝下时身体的完整表现。图 1 展示了 Paul Nogier 在 1961 年提出的第一个表现形式。从胚胎学上讲,耳朵的外部在第五到六周才开始发育,由六个小丘组成,其中 1-3 个来自第一鳃弓,4-6 个(5 个未发育)来自第二鳃弓。每个小丘包含来自中胚层、外胚层和内胚层的细胞。四条脑神经(三叉神经 (V)、面神经 (VII)、舌咽神经 (IX)、迷走神经 (X))的突起分支和浅颈丛的分支支配耳朵。图 2 显示了耳朵的神经支配(1)。迷走神经用绿色标记,舌咽神经用红色标记,三叉神经用蓝色标记,耳大神经(颈浅丛的一个分支)用黄色标记。
作为神经退行性疾病之一,帕金森氏症的DI SEASE(PD)被定义为进行性运动障碍,在浮躁的运动迟缓,僵硬,震颤和严重的非运动障碍方面[1-3]。PD的孵化时间很长,表现为厌食,便秘,睡眠障碍等。[4]。典型的病理变化包括大脑斑nigra(Sn)和纹状体(SN)中Dopa Minermeg神经元的丧失,以及神经元和轴突中Lewy身体的形成(由VA型蛋白质组成的蛋白质聚集物,由α-核蛋白(α-Synyn)等VA蛋白组成。最新的研究表明,路易体中的α-syn在肠道神经元和内分泌细胞中表达,因此一些学者推测PD病理可能起源于睾丸[6]。此外,当将α-syn注射到啮齿动物的睾丸中时,它可以通过迷走神经扩散到大脑中,而切断迷走神经可以阻止其传输途径,从而降低PD的风险[7]。这些发现与PD更紧密地链接肠道微生物群。同样,肠道微生物群的不平衡,包括肠道微生物群的定性和定量变化,可能与PD的进展密切相关[8]。
神经调节装置,例如外周神经刺激器和迷走神经刺激器,被批准用于治疗枕神经痛、偏头痛、癫痫和抑郁症。6 神经调节已被用于治疗肥胖症、7 抑郁症、8 阿尔茨海默病、9 创伤后应激障碍、10 药物成瘾、11 神经性厌食症、12 中风康复 13 和许多其他疾病。随着我们逐渐了解越来越多神经系统疾病的回路过程,我们可以扩大这些创新疗法的适应症。对网络疾病机制的这种日益深入的理解提出了更精细的神经调节方法,可能需要跨多个目标协调神经感知和刺激。在过去十年中,闭环刺激范式已成为神经调节领域的一个重要范式转变。14 该技术现在已在用于治疗癫痫的 RNS 设备中商业化使用。 3 最新一代迷走神经刺激器系统还结合了心率检测作为癫痫发作活动的闭环指标和刺激触发。15 最后,一些最新的 DBS 系统记录选定的局部场电位,并有能力(目前锁定在商业版本中)根据这些信号调整刺激。16
然而,有许多条件可以模仿过敏反应,例如迷走神经反应,焦虑和声带功能障碍。虽然有时很难区分这三个条件,但如果您怀疑过敏,请遵循工作场所的适当指南并转移到医院。如果诊断存在不确定性,则不应遵守过敏反应的治疗。但是,如果给予肾上腺素,重要的是要向接受肾上腺素的人保证替代诊断的可能性,但是由于安全性是安全的,因此正在给予肾上腺素。可以在后期重新评估过敏反应的可能诊断。
分区观察中胎儿心率的分析和解释表明,它们在鉴定有新生儿窒息的胎儿中的局限性,这是导致死亡或脑瘫。连续电子心率监测的弱特异性会产生不合理的剖腹产过量,这与直接和别有用心的Materno-Fetal morbi-orbiortality的增加有关。目前,对胎儿心率的视觉分析仅在计时形态学模式上置于。然而,有另一种方式呼吁胎儿心血管控制的生理过程知识:在常氧血症的情况下,近期胎儿的周围性压力感受器负责用两种系统在行动中控制动脉压的动脉压力:永久加速交响系统的促进性副总经理系统,该系统可间隔的征服性,以下简化症。在急性低氧血症的情况下,刺激周围化学感受器并诱导迷走迷走神经介导的心率下降(即在急性低氧血症的情况下,刺激周围化学感受器并诱导迷走迷走神经介导的心率下降(即减速)和通过交感神经系统介导的周围血管收缩。在酸中毒的情况下,中央化学感受器被激活。然后刺激产生胎儿心动过速的交感神经系统,并抑制周围压力感受器的功能,从而最小化至少可变性。从此表明可变性和心脏基线是反映胎儿预后的两种模式。关键字:胎儿心率;生理病理学方法;压力感受器;新生儿窒息;剖腹产
对最长正确答案、正确答案数、反应时间和疲劳变量进行了组内前测比较和组间比较(表2)。结果显示,实验组前测后测比较中,最长正确答案、正确答案数和反应时间变量存在统计学差异(p<0.05),疲劳变量差异不显著(p>0.05)。对照组前测后测比较中,反应时间变量存在统计学差异(p<0.05),最长正确答案、正确答案数和疲劳变量差异不显著(p>0.05)。实验组与对照组比较中,最长正确答案和正确答案数存在统计学差异(p<0.05),反应时间和疲劳变量差异不显著(p>0.05)。
微生物群是动态的,会随着早期发育、环境因素(如饮食和抗生素的使用)以及尤其是对疾病的反应而变化(Lozupone 等人,2012 年)。最显著的变化发生在婴儿期和幼儿期(Palmer 等人,2007 年)。婴儿肠道微生物群受胎龄(足月或早产)、分娩方式(阴道分娩或剖腹产)、喂养类型(母乳或配方奶粉)、母亲营养状况(超重或营养不良)和抗生素使用情况的影响(Meropol 和 Edwards,2015 年)。肠道微生物群发挥着一系列重要的生理功能,包括食物消化、维生素生成、免疫系统调节和预防有害病原体定植。最近,人们对肠道微生物群的兴趣日益浓厚,因为它不仅是我们消化系统和整体健康的重要组成部分,而且在精神疾病中也发挥着重要作用。通过肠脑轴,肠道菌群与神经系统进行交流,利用各种途径,如 HPA 轴(下丘脑-垂体-肾上腺轴)、迷走神经和免疫系统分子的参与,即参与炎症过程的细胞因子。神经通路包括迷走神经、肠神经系统和胃肠道内神经递质的活动。传入感觉神经的神经调节直接产生可作为局部神经递质的分子,如γ-氨基丁酸 (GABA)、血清素、褪黑激素、组胺和乙酰胆碱;该通路还在肠腔内产生具有生物活性的儿茶酚胺(Mayer 等人,2014 年)。此外,肠道微生物群似乎对正常的肠道内在初级传入神经元兴奋性至关重要 (McVey Neufeld 等人,2017 年)。细菌代谢物,最重要的是短
中枢神经系统和自主神经系统之间的动态信息交换,即功能性脑-心脏相互作用,发生在情绪和身体唤醒期间。据充分证明,身体和精神压力会导致交感神经激活。然而,自主神经输入在精神压力下神经系统间交流中的作用尚不清楚。在本研究中,我们使用最近提出的功能性脑-心脏相互作用评估计算框架,即交感迷走神经合成数据生成模型,估计了脑电图 (EEG) 振荡与外周交感神经和副交感神经活动之间的因果和双向神经调节。通过在与压力水平增加相关的三个任务中增加 37 名健康志愿者的认知需求来引发精神压力。压力引发会导致交感迷走神经标志物变化增加,以及脑-心脏方向相互作用变化增加。观察到的心脑相互作用主要来自针对广泛脑电图振荡的交感神经活动,而传出方向的变化似乎主要与 c 波段的脑电图振荡有关。这些发现扩展了当前对压力生理学的认识,该知识主要涉及自上而下的神经动力学。我们的结果表明,精神压力可能不会导致交感神经活动完全增加,因为它会引发脑体网络内的动态波动,包括脑心水平的双向相互作用。我们得出结论,定向脑心相互作用测量可以为定量压力评估提供合适的生物标记,身体反馈可能会调节因认知需求增加而引起的感知压力。
肠道微生物组包括数万亿微生物,包括细菌,病毒,真菌和古细菌,它们通过各种信号通路积极与宿主积极通信。[3]持续的证据表明,这种复杂的肠道微生物网络在多种生理过程中起着至关重要的作用,包括免疫调节,营养代谢和神经递质的合成。此外,最近的研究通过迷走神经,免疫系统和微生物代谢产物的产生确定了肠道与大脑之间的双向通信。这种通信系统被称为肠脑轴,作为认知功能和神经退行性疾病(例如痴呆症)的潜在介体引起了人们的重大关注。