量子信息科学正在迅速发展,迫切需要紧凑型单波长(单频)激光光源。受激光与原子尺度上的独特材料的相互作用推动了量子计算和量子应用的进步,需要特定波长来针对单个原子相互作用。自然物理学决定了与特定原子、晶体和环境相互作用所需的独特波长。许多这些所需波长都在近紫外 (UVA) 和可见光谱中。由于其独特的激光特性,氮化镓 (GaN) 激光器非常适合解决这些自然界规定的 UVA 和可见波长。新兴量子市场为可见激光二极管制造商(如 BluGlass)提供了巨大的机会,因为许多实现原子跃迁的波长都发生在可见波长,并且在包括先进机器人和生物医疗设备在内的极具前景的应用中越来越受到客户的追捧。脑驱动的假肢自动化和用于军事和商业应用的量子导航原子钟就是这种下一代技术的很好例子。麦肯锡公司在其 2021 年量子报告中指出:“量子计算是我们这个时代最具革命性的技术之一,距离广泛的商业应用还有十年的时间。然而,鲜为人知但具有关键工业和科学意义的两项相关技术将更早面世:量子传感 (QS) 和量子通信 (QComm)。
金属卤化物钙钛矿是有前途的半导体,在光电和光子技术中具有有希望的应用。当针对相干的排放应用时,必须开发具有较低激光阈值和稳定性的材料,以提高连续波光学泵送条件下的性能,并最终允许实现长期备受追捧的电泵激光。钙钛矿多量子孔(MQW)可以通过在异质结构的井中结识光兴激素来缓解种群反转,但是它们的制造过程和结构设计仍然需要精致的优化,以使它们有价值的光子平台。在这里,使用一种简便且易于扩展的顺序单源真空蒸发方法,基于有机半导体和CSPBBR 3制造钙钛矿MQW。带有有机层层的钙钛矿显示出从根本增强的相位稳定性,钝化缺陷和改善的辐射重组特性。以这种方式,可以在正确设计异质结构井和屏障厚度后,可以实现光学泵送的自发发射。这项工作报告了一种有效的钙钛矿MQW制造方法,同时提供了对其光物理特性的更深入的了解,以促进其作为相干发射器的应用。
• 以经济环保的方式回收稀有金属并修复锂离子电池的阳极。预计到本世纪末,锂离子电池的产量将增长两倍。目前,只有不到 5% 的电池被回收利用。 • 光激活分子机器可以杀死“革兰氏阳性”细菌,这些细菌的厚细胞壁可以抵抗抗生素。这些分子具有高度选择性,不太可能引起广谱抗生素的副作用,广谱抗生素会不加区别地杀死“坏”细菌和“好”细菌,并导致耐药性。 • 开发了一种锂化涂层,可有效防止锂电池上形成枝晶,从而减少短路并延长电池寿命。 • 使用闪光焦耳加热生产氮化硼 (BN) 薄片,这是一种备受追捧的 2D 材料。BN 通常用作润滑剂、添加到化妆品中的软化剂或陶瓷和金属化合物的添加剂,以提高耐热性。它还被用作催化剂来破坏 PFAS,CDC 声称 PFAS 对人体健康构成威胁。• 在醋酸钾存在下加热塑料废物,产生具有纳米级孔隙的颗粒,这些颗粒可以捕获二氧化碳分子。用这种材料制成的过滤器可以捕获来自发电厂烟囱等的二氧化碳排放,成本不到竞争方法的四分之一。
最受追捧的科学目标之一是实现量子计算 1,它利用量子力学定律和资源来实现快速非常复杂的算法,2-4 实现量子模拟 5 或利用量子密码学。6 这需要一个两级量子系统作为信息的基本单位(量子比特),以及一种以逻辑方式寻址这些量子比特并将它们互连以进行计算的技术。在提出的实现量子比特的系统中,7-10 分子电子自旋对化学家来说尤其有吸引力。11-13 因此,人们做出了重要努力来理解控制过渡金属 14-16 和镧系元素配位化合物中自旋量子相干性的因素。17-19 量子门的实现需要对几个互连的量子比特进行相干操控。分子已被制备成 2 量子比特量子门的原型,要么是非等价纠缠金属离子的二聚体,20,21,要么是具有可切换相互作用的基于金属的量子比特对。22,23 还有人建议将核自旋自由度用作 N -qudits(维度为 N 的信息单位),24,25 并且一些方案依赖于核自旋和电子自旋之间的超精细相互作用来实现复杂的协议,例如量子纠错方法 26 或实现
美国埃里克·马祖尔(Eric Mazur Harvard)教授埃里克·马祖尔(Eric Mazur)是巴尔干·马祖尔(Eric Mazur),是约翰·鲍尔森(John A. Paulson)工程科学学院应用科学和工程学的物理学和应用物理和学术院长,哈佛大学,教育学院教育学院成员,哈佛教育学院教育学院成员,教育学院教育学院和Optica的过去(以前的学会)。Mazur是一位著名的物理学家,以其在纳米光学方面的贡献,国际认可的教育创新者和备受追捧的演讲者而闻名。在教育中,他以他在同伴教学上的工作而广为人知,这是一种互动教学方法,旨在使学生参与课堂及以后。2014年,Mazur成为密涅瓦高等教育进步奖的首届获得者。他因物理和教育工作而获得了许多奖项,并创立了多家成功的公司。Mazur已广泛发表在同行评审的期刊上,并拥有许多专利。他还广泛地撰写了有关教育的文章,并且是同伴教学的作者:用户手册(Prentice Hall,1997年),该书解释了如何交互方式教授大型讲座课程,以及物理学的原理和实践(Pearson,2015),这本书,一本书,为教学的基于简介的物理学提供了开创性的新方法。Mazur是光学和教育的主要发言人。他关于互动教学,教育技术和评估的动机演讲激发了世界各地的人们改变其教学方法。
摘要 使用光度测定法进行混响映射的精确方法受到高度追捧,因为它们本质上比光谱技术耗费的资源更少。然而,在红移高于 z ≈ 0.04 的情况下,光度混响映射对估计黑洞质量的有效性研究很少。此外,光度测定方法通常假设阻尼随机游走 (DRW) 模型,这可能并不普遍适用。我们使用 JAVELIN 光度 DRW 模型对 z = 0.351 处的 QSO SDSS-J144645.44 + 625304.0 进行光度混响映射,并估计 H β 滞后为 65 + 6 − 1 d,黑洞质量为 10 8 。22 + 0 。13 − 0 .15 M ⊙ .使用数千个模拟 CARMA 过程光变曲线进行的光度混响映射可靠性分析表明,考虑到我们目标的观测信噪比 > 20 和平均节奏为 14 d(即使不适用 DRW),我们可以将输入滞后恢复到平均 6% 以内。此外,我们使用我们的模拟光变曲线套件从我们的 QSO 的后验概率分布中解卷积混叠和伪影,将滞后的信噪比提高了 ∼ 2.2 倍。我们以每个物体四分之一的观测时间超越了斯隆数字巡天混响测绘项目 (SDSS-RM) 活动的信噪比,从而使信噪比效率比 SDSS-RM 提高了约 200%。
受控环境农业(CEA)代表了园艺发展最快的部门之一。在受控环境中的生产范围从具有100%人工照明(垂直农场或植物工厂)到具有或没有补充照明的高科技温室,再到简单的温室和高隧道范围。尽管粮食生产发生在高隧道内的土壤中,但大多数CEA操作都使用各种水培系统来满足作物灌溉和生育需求。CEA的扩展提供了有望作为增加城市及其附近粮食生产的工具,因为这些系统不依赖可耕地的农业土地。此外,CEA通过在保护性结构内部生长提供了对气候不稳定的韧性。从CEA系统收获的产品往往具有高质量的内部和外部,并且受到消费者的追捧。目前,CEA生产商依靠在开放式农业中生产的品种。由于CEA的高能量和其他生产成本,只有有限数量的食品作物证明自己是生产的预曲。导致这种情况的一个因素可能缺乏优化的品种。室内生长的操作为这些系统理想的繁殖品种提供了机会。为了促进这些专业品种的繁殖,可以为植物育种者提供多种工具,以帮助加快这一过程并提高其效率。它还回顾了许多可用于基因组知识育种,标记辅助选择的工具,本评论旨在满足繁殖机会和需求,以便在CEA系统中已经生产过多种园艺作物,或者具有CEA生产潜力。
Aldar 以 9.4 亿迪拉姆的价格将萨迪亚特岛的 Manarat Living III 一售而空。Aldar 宣布,其在萨迪亚特岛以设计为主导的城市系列的最终版本 Manarat Living III 在短短 24 小时内就销售一空,创造了 9.4 亿迪拉姆的销售额。该社区如此快的销售速度反映了萨迪亚特岛作为阿布扎比最受追捧社区的声誉,该社区拥有一系列独特的住宅概念,吸引了大量本地和国际买家的兴趣。阿联酋国民占销售额的 28%,而外籍居民和海外买家占 72%,突显了对萨迪亚特岛住房的普遍需求。按销售量计算,阿联酋、约旦、中国和英国国民是前四大国际买家。65% 的买家年龄在 45 岁以下,反映出现代住宅概念在年轻购房者中越来越受欢迎。 Aldar 房产的首次购房者占销售额的 57%,凸显了 Aldar 品牌在投资者和房主中越来越受欢迎。这个精品住宅社区拥有 400 套城市住宅,是 Manarat Living 系列中最高的项目。它提供增强的设施和高级功能,包括精心设计的户外和社区空间。
→ 厌氧消化 (AD) 仍然是最常用的沼气生产技术。为了提高沼气和生物甲烷的产量,正在开发新的预处理方法以解锁更多原料,例如木质纤维素和木质材料,这些材料只有经过额外处理才能在厌氧消化中生物降解。→ 继厌氧消化之后,水热气化正在扩大规模,预计到 2023-2025 年将达到全工业规模。→ 为了运输生产的生物甲烷,一些国家即将升级其天然气管网,因为分散的生物甲烷生产与大多数国家天然气管网目前自上而下的结构不匹配。正在安装反向流设施,以允许从输电网到配电网的双向流动,反之亦然。目前,丹麦、法国、德国和荷兰共有 15 个反向流设施投入使用;25 个正在建设中(丹麦、法国、比利时);16 个可行性研究已经公布(法国、意大利)。 → 随着化石燃料和二氧化碳价格不断上涨,生物甲烷在工业领域越来越受欢迎。例如,它被用作化工、钢铁、食品和饮料行业的原料,为工业供热或热电联产厂提供能源。在运输领域,生物液化天然气 (LNG) 和生物压缩天然气 (CNG) 越来越多地用于乘用车和重型卡车。生物液化天然气也受到海运业的追捧。从沼气中捕获的二氧化碳正成为一种宝贵的气候中性原料,用于替代工业中基于化石的二氧化碳。
植物转化仍然是功能基因组学和作物遗传改良最受追捧的技术,尤其是用于引入特定的新特性以及修改或重组已有特性。自 25 年前首次推出以来,转基因作物与许多其他农业技术一样,全球产量稳步增长。自首次使用农杆菌将 DNA 转移到植物细胞以来,不同的转化方法推动了分子育种方法的快速发展,将具有新特性的作物品种推向市场,而这些特性是传统育种方法难以实现或不可能实现的。如今,转化生产转基因作物是农业领域最快和最广泛采用的技术。植物基因组测序数量迅速增加,功能基因组学数据中的信息有助于了解基因功能,再加上新型基因克隆和组织培养方法,进一步加速了作物改良和特性发展。这些进步是值得欢迎的,也是使作物更能适应气候变化并确保产量以养活不断增长的人口所必需的。尽管取得了成功,但转化仍然是一个瓶颈,因为许多植物物种和作物基因型难以适应既定的组织培养和再生条件,或者转化能力较差。使用形态发生转录调控因子可以进行改进,但它们的广泛适用性仍有待检验。基因组编辑技术的进步和直接、非组织培养的转化方法为增强其他难转化作物品种的开发提供了替代方法。在这里,我们回顾了植物转化和再生的最新进展,并讨论了农业中新育种技术的机会。