本文以我们最近发表的一篇论文为基础,在这篇论文中,我们提出了一种通过量子退火进行素数分解 (PF) 的新方法,其中 8,219,999 = 32,749 × 251 是我们能够分解的最高素数乘积——据我们所知,这是有史以来通过量子设备分解的最大数字。然而,导致我们得到这些结果的一系列退火实验并没有遵循直线路径;相反,它们涉及一个复杂的反复试验过程,充满了失败或部分失败的尝试和回溯,最终只能促使我们找到成功的退火策略。在本文中,我们深入探讨了实验决策背后的原因,并介绍了在构思最终策略之前我们进行的一些尝试,这些策略使我们能够实现结果。这还涉及我们研究的一系列想法、技术和策略,尽管结果证明它们不如前者。我们最终采用的方法,可能会为更专业的 D-Wave 用户和从业者提供见解。具体来说,我们展示了以下见解:(i)不同的初始化技术会影响性能,其中通量偏差在针对局部结构化嵌入时是有效的;(ii)与依赖全局嵌入的问题相比,链强度在局部结构化嵌入中的影响较小;(iii)断链和激发的 CFA 之间存在权衡,这表明基于模块而不是单个量子位的增量退火偏移补救方法。因此,通过分享我们经验的细节,我们旨在提供对量子退火不断发展的前景的见解,并帮助人们访问和有效使用 D-Wave 量子退火器。
我们对量子退火 (QA) 与模拟退火 (SA) 进行了基准测试,重点关注问题嵌入到 D-Wave 量子退火器的不同拓扑上的影响。我们研究的一系列问题是最大基数匹配问题的特别设计实例,这些问题很容易通过经典方法解决,但对于 SA 来说很难,而且实验发现,对于 QA 也不容易。除了使用多个 D-Wave 处理器外,我们还通过数值求解时间相关的薛定谔方程来模拟 QA 过程。我们发现嵌入问题可能比非嵌入问题困难得多,并且某些参数(例如链强度)对于找到最佳解决方案可能非常有影响。因此,找到良好的嵌入和最佳参数值可以大大改善结果。有趣的是,我们发现尽管 SA 在解决非嵌入问题方面取得了成功,但与我们在 D-Wave 量子退火器上取得的成果相比,嵌入版本获得的 SA 结果相当差。
复合材料的使用已经显着增长,尤其是在轻质结构和生物医学应用的生产中。一种复合材料由玻璃纤维增强的聚合物材料组成。用25%切碎的玻璃纤维加固的 PA6-GF是该复合材料组的代表。 制造商建议将退火作为生产后的热处理过程。 但是,退火需要额外的设备和时间。 本文旨在研究非禁令PA6 GF对夏比冲击特性的影响。 根据BAS EN ISO 179-2:2021定义了夏比冲击属性测试的样品。 测试样品是在Flashforge Creator 3 Pro打印机上打印的,并且在Amsler RPK300设备上执行了测试。PA6-GF是该复合材料组的代表。制造商建议将退火作为生产后的热处理过程。但是,退火需要额外的设备和时间。本文旨在研究非禁令PA6 GF对夏比冲击特性的影响。根据BAS EN ISO 179-2:2021定义了夏比冲击属性测试的样品。测试样品是在Flashforge Creator 3 Pro打印机上打印的,并且在Amsler RPK300设备上执行了测试。
Dichalcogenides (TMDCs) Ahmad Nizamuddin bin Muhammad Mustafa Sami Ramadan 1 , Peter K. Petrov 1 , Huanyu Zhou 1 , Giuseppe Mallia 1 , Nicholas Harrison 1 , Yasir Noori 2 , Shibin Thomas 2 , Victoria Greenacre 2 , Gill Reid 2 , Philip N Bartlett 2 , Kees de Groot 2 , Norbert Klein 1 1 Imperial College London, London, United Kingdom 2 University of Southampton, Southampton, United Kingdom a.bin-muhammad-mustafa21@imperial.ac.uk Two-dimensional (2D) heterostructures composed of graphene and Transition Metal Dichalcogenides (TMDCs) have garnered significant attention owing to their unique physics and potential applications in diverse设备。TMDC,包括MOS 2,WS 2,Mose 2和WSE 2,由于其带隙范围和强烈的轻度 - 互动,因此对电子和光电应用受到了电子和光电应用的青睐。TMDC和石墨烯中都没有悬空键,允许在异质结构中无缝集成,与单物质构型相比,为出色的设备铺平了道路。在使用机械去角质堆叠单个层的同时,化学蒸气沉积(CVD),电沉积和原子层沉积的最新进展为大面积的生长和可伸缩性提供了希望[1] [2]。但是,需要在生长后或生长后的高温暴露,可能会改变石墨烯的特性。我们研究了硫退火对石墨烯对TMDCS生长的电和结构特性的影响。在各种条件下,在温度范围为300-800°C的温度下进行系统退火。参考我们的发现表明,真空退火在石墨烯中诱导蚀刻,这会因硫种类的存在而加剧,从而导致电性能显着降解(图1)。值得注意的是,用自组装单层涂层的石墨烯会减轻这种降解,从而使高质量TMDC在石墨烯上沉积。MOS 2和WS 2对石墨烯的电沉积,然后进行硫退火后处理证明了该策略的功效。这项研究阐明了硫退火在影响石墨烯质量中的关键作用,并为TMDC在石墨烯上的生长铺平了道路,用于高性能电子应用。
宽带盖材料中的单光子发射器(SPE)代表了一个吸引人的平台,用于开发在室温下运行的单光子源。III组二硝酸盐先前已被证明具有有效的SPE,这些SPE归因于材料的大带隙内的深度能级,其构型与钻石的广泛研究的颜色中心相似。最近已经证明了氮和氮化铝(ALN)内的缺陷中心的抗束发射。由于III-硝酸盐与洁净室过程的兼容性,这种缺陷的性质和形成它们的最佳条件尚未完全理解,虽然特别有趣。 在这里,我们通过热退火和共聚焦显微镜测量的亚分步上研究了商业Aln Epilayer上的Al植入。 我们观察到发射器的密度的依赖性依赖性增加,从而导致在最大植入量的情况下创建合奏。 在600℃下退火导致SPES形成最大的最佳产量,而在较低的静电液处则观察到SPE密度的显着降低。 这些发现表明,空缺形成的机制在固体状态下SPE的缺陷工程中的发射器和开放诱人的观点中起着关键作用。虽然特别有趣。在这里,我们通过热退火和共聚焦显微镜测量的亚分步上研究了商业Aln Epilayer上的Al植入。我们观察到发射器的密度的依赖性依赖性增加,从而导致在最大植入量的情况下创建合奏。在600℃下退火导致SPES形成最大的最佳产量,而在较低的静电液处则观察到SPE密度的显着降低。这些发现表明,空缺形成的机制在固体状态下SPE的缺陷工程中的发射器和开放诱人的观点中起着关键作用。
关键词:离子注入、SiC、封盖、碳、退火。摘要本研究报告了一项广泛的研究,研究了离子注入 SiC 材料高温退火过程中使用的封盖材料对表面粗糙度和质量、掺杂剂分布和扩散以及晶体缺陷的影响。本研究调查了化学气相沉积 (CVD)、物理气相沉积 (PVD) 和热解光刻胶 (PR) 碳封盖材料。CVD 碳层(也称为高级图案化膜 (APF®))是使用 Applied Producer® 沉积的。引言 在加工碳化硅 (SiC) 晶片以制造功率 MOSFET 和二极管 [1] 等微电子器件的过程中,离子注入后在衬底晶片顶部沉积一层保护层,以防止 Si 升华和台阶聚束形成以及其他表面缺陷的出现 [2, 3, 4],从而保持表面质量,这些缺陷发生在激活 SiC 中掺杂剂所需的高温退火步骤中 [5]。这项工作研究了在这种高温退火过程中使用的保护性覆盖材料对表面和块体材料质量的影响。实验细节 在高温 (500 ˚C) 下用铝离子注入样品,铝离子以 180 keV 和 2.5E15 离子/cm2 的剂量加速,以便在约 0.2 微米深度处实现约 2E20 离子/cm3 的峰值浓度。然后用不同的碳基材料覆盖样品,然后在 1800˚C 下退火 30 分钟。然后用 O2 灰分去除保护盖,随后进行清洁和擦洗,然后进行原子力显微镜 (AFM)、在 SICA 工具上实现的表面和体光致发光 (PL) 以及二次离子质谱 (SIMS)。结果我们报告了模拟和 SIMS 显示的铝注入后轮廓之间的出色一致性
基于 Al/AlO x /Al 约瑟夫森结的超导量子比特是通用量子计算机物理实现最有希望的候选者之一。由于可扩展性和与最先进的纳米电子工艺的兼容性,人们可以在单个硅芯片上制造数百个量子比特。然而,由非晶电介质中的双层系统(包括隧道势垒 AlO x )引起的这些系统中的退相干是主要问题之一。我们报告了一种约瑟夫森结热退火工艺开发,用于结晶非晶势垒氧化物(AlO x )。获得了热退火参数对室温电阻的依赖关系。所开发的方法不仅可以将约瑟夫森结电阻提高 175%,还可以将其降低 60%,R n 的精度为 10%。最后,提出了关于隧道势垒结构修改的理论假设。建议的热退火方法可用于为广泛使用的固定频率 transmon 量子比特形成稳定且可重复的隧道屏障和可扩展的频率调整。
本文介绍了一种解决离散优化 NP 难问题的新方法,该方法适用于实现硬件量子退火的量子处理器 (QPU,Quantum Processor Unit) 的架构。该方法基于在精确分支定界算法中使用量子退火元启发式算法来计算目标函数的下限和上限。为了确定下限,使用了一种定义对偶问题 (广义离散背包问题) 的拉格朗日函数的新方法,其值在量子机的 QPU 上计算。反过来,为了确定上限,我们以带约束的二元二次规划形式制定了适当的任务。尽管量子机生成的结果是概率性的,但本文提出的混合算法构建方法交替使用 CPU 和 QPU,保证了最佳解决方案。作为案例研究,我们考虑 NP 难单机调度问题,最小化延迟作业的加权数量。进行的计算实验表明,在解决方案树的根部已经获得了最优解,并且下限和上限的值仅相差百分之几。
Los Alamos国家实验室是一项平权行动/均等机会雇主,由Triad National Security,LLC经营,为美国能源部国家核安全管理局根据合同89233218CNA000001运营。通过批准本文,出版商认识到,美国政府保留了不判有限定的免版税许可,以出版或复制已发表的此捐款形式,或者允许其他人出于美国政府的目的。洛斯阿拉莫斯国家实验室要求出版商根据美国能源部主持的工作确定这篇文章。Los Alamos国家实验室强烈支持学术自由和研究人员发表权;但是,作为一个机构,实验室并未认可出版物的观点或保证其技术正确性。
抽象量子计算对加密安全性提出了令人兴奋但艰巨的挑战。各种量子计算机在攻击RSA方面的进步显然迟钝。与关键技术(例如通用量子计算机上的误差校正代码)所施加的约束相反,D-Wave特殊量子计算机的关键理论和硬件开发的发展显示出稳定的生长轨迹。量子退火是D-WAVE特殊量子计算背后的基本原理。它具有独特的量子隧道效应,可以跳出传统智能算法容易陷入的局部极端。可以将其视为具有全球优化能力的人工智能算法。本文使用纯量子算法和量子退火与经典算法相结合以实现RSA公共密钥加密攻击(分解大型Integer N = PQ),介绍了两种基于量子退火算法的技术方法。一种是将加密攻击的数学方法转换为组合优化问题或指数空间搜索