化学问题,需要对复矩阵进行对角化。例如,量子散射共振的计算可以表述为复特征值问题,其中特征值的实部是共振能量,虚部与共振宽度成正比。在目前的研究中,我们将 QAE 推广到处理复矩阵:首先是复 Hermitian 矩阵,然后是复对称矩阵。然后使用这些推广来计算 O + O 碰撞的一维模型势中的量子散射共振态。这些计算是使用软件(经典)退火器和硬件退火器(D-Wave 2000Q)执行的。复 QAE 的结果也与标准线性代数库(LAPACK)进行了对比。这项工作提出了量子退火器上任何类型的复特征值问题的第一个数值解,也是任何量子设备上量子散射共振的首次处理。
该项目旨在增强水资源的动员,牧场管理,生计多样化,市场访问基础设施以及人类和机构能力。这涉及引入适应策略来减轻气候变化的不利影响,从而加强了牧民和农业家庭的韧性,以抵抗气候危害。目标不仅是使社区能够承受冲击,而且还可以将其生计调整为更具挑战性的气候条件。此外,该项目旨在协助牧民和农业 - 帕斯多尔家庭管理干旱风险,支持以社区为导向的倡议,以实现可持续和气候耐性的保护,保护和自然资源的恢复。此外,它强调赋予牧民社区的能力,积极参与计划和实施发展活动。
说明: 1. 为提升股东权益报酬率,拟办理现金减资退还股款【附件八】。 2. 本公司额定资本额为新台币18,000,000,000 元,分为1,800,000,000 股,每股面额10 元。截至目前为止实际发行股数749,589,356 股,拟现金减资新台币2,623,562,750 元,销除已发行股份262,356,275 股,现金减资比率约为35% ,现金减资后实收资本额为新台币4,872,330,810 元,每股面额10 元,分为487,233,081 股。 3. 依已发行普通股总股数计算,预计每仟股换发650 股( 即每仟股减少350 股) ,预计每股退还现金新台币3.5 元。减资后不足一股之畸零股,股东得于减资换发
量子计算是解决化学问题的一种新兴范式。在之前的工作中,我们开发了量子退火特征求解器 (QAE),并将其应用于 D-Wave 量子退火器上分子振动光谱的计算。然而,原始的 QAE 方法仅适用于实对称矩阵。对于许多物理和化学问题,需要对复矩阵进行对角化。例如,量子散射共振的计算可以表述为复特征值问题,其中特征值的实部是共振能量,虚部与共振宽度成正比。在目前的研究中,我们将 QAE 推广到处理复矩阵:首先是复厄米矩阵,然后是复对称矩阵。然后使用这些推广来计算 O + O 碰撞的一维模型势中的量子散射共振态。这些计算是使用软件(经典)退火器和硬件退火器(D-Wave 2000Q)执行的。复杂 QAE 的结果也与标准线性代数库(LAPACK)进行了对比。这项工作提出了量子退火器上任何类型的复杂特征值问题的第一个数值解,也是任何量子设备上量子散射共振的第一次处理。
住友理工株式会社(总部:名古屋市中村区;总裁兼首席执行官:清水一志;以下简称“住友理工”)与 JFE 工程集团旗下的 Urban Energy Corporation(总部:横滨市鹤见区;总裁首席执行官:小林淳;以下简称“Urban Energy”)、J&T Recycling Corporation(总部:横滨市鹤见区;总裁兼首席执行官:长谷场博之;以下简称“J&T Recycling”)及其子公司 Bios Komaki Company Limited(总部:爱知县小牧市;总裁兼代表董事:广部智树;以下简称“Bios”)合作,自 6 月起将住友理工研究所“Technopia”(爱知县小牧市)使用的所有电力转换为大量可再生能源,作为实现碳中和的努力之一。
量子计量的目标是利用纠缠等量子特性精确估计参数。这种估计通常包括三个步骤:状态准备、时间演化(在此过程中参数信息被编码到状态中)和状态读出。时间演化过程中的退相干通常会降低量子计量的性能,被认为是实现纠缠增强传感的主要障碍之一。然而,我们表明,在适当的条件下,可以利用这种退相干来提高灵敏度。假设我们有两个轴,我们的目标是估计它们之间的相对角度。我们的结果表明,使用 Markvoian 集体退相干来估计两个方向之间的相对角度可实现海森堡极限灵敏度。此外,我们基于 Markvoian 集体退相干的协议对环境噪声具有鲁棒性:即使在独立退相干的影响下,也可以通过应用集体退相干来实现海森堡极限。我们提出的关于退相干的反直觉建议为量子计量学带来了新的应用。
摘要:退相干是一种基本现象,当纠缠量子态与其环境相互作用时,会导致波函数坍缩。退相干的必然性提供了量子计算最内在的限制之一。然而,对导致退相干的环境化学运动的研究很少。在这里,我们使用量子分子动力学模拟来探索液态氩中 Na 2 + 的光解离,其中溶剂波动会引起退相干,从而决定化学键断裂的产物。我们使用机器学习将溶质-溶剂环境表征为高维特征空间,使我们能够预测键合电子何时以及在哪个光碎片上定位。我们发现,达到必要的光碎片分离并经历异相溶剂碰撞是化学键断裂过程中退相干的基础。我们的工作强调了机器学习在解释复杂溶液相化学过程方面的实用性,并确定了退相干的分子基础。
I. 引言 容错量子纠错码 (QECC) 按照定义能够避免错误传播。更明确地,[ n, k, d ] 最大-最小距离 QECC 将 k 个逻辑量子比特编码为 n 个物理量子比特,最小距离为 d,因此它能够纠正 t = [ d − 1 / 2] 个单独的物理量子比特错误。我们的设计目标是确保尽管使用了现实的不完美量子门,错误的扩散不会导致超出容错 QECC 的纠错能力。更正式地讲,如果单个组件以概率 p 发生故障,导致电路块输出端出现少于 t = ( d − 1) / 2 个单独的量子比特错误,则受 [ n, k, d ] QECC 保护的量子电路具有容错能力 [1]。在这个理想假设下,单个门引入的物理量子比特错误不会升级为无法纠正的错误数量,前提是考虑 [ n, k, d ] QECC。但是,如果单个门错误耗尽了 [ n, k, d ] 代码的纠错能力,遇到第二个门错误将导致错误扩散。我们假设单个门错误的概率为 p 。因此,两个同时发生的门错误的概率为 O ( p 2 ) ,前提是错误事件彼此独立,而 p ≪ 1 和 p 2 < p 。不幸的是,受控非 (CNOT) 门中控制量子比特的位翻转错误将导致有害的