观察:基于长链单人的脂肪族型聚酯是大约一个世纪前首次合成的。实际上,在这种聚酯样品上进行了Carothers的精确观测,这些观察结果是建立了整个合成聚合物纤维的整个领域。但是,作为材料,它们仅在过去十年中进化。这是由相应的单体从植物油的高级催化转化中获得的,未来的前景包括来自第三代原料(例如微藻或废物)的一代。长链聚植物,例如聚酯-18.18,被认为是链中潜在断点密度低的聚乙烯链。这些不损害类似于线性高密度聚乙烯(HDPE)的晶体结构或材料特性,并且材料也可以通过注射成型,膜或纤维挤出以及添加剂制造中的细丝沉积来融化。同时,它们可以通过溶剂分解进行闭环化学回收,这也可以在包含聚烯烃甚至聚苯二甲酸乙酯的混合废物流中。恢复的单体具有一种质量,可使可回收的聚酯产生具有与维珍材料的属性相同的特性。(生物)降解性随成分单体巨大变化。基于短链二醇和长链二羧酸盐在工业堆肥条件下完全矿化的聚酯,尽管它们具有HDPE样结晶度和疏水性。■密钥参考对这些聚合物的形态和热行为的基本研究揭示了链内组的位置及其在结晶过程和熔化过程中在结构形成中的特殊作用。通过类似的长链脂肪族聚合物与其他链内组(如碳酸盐和乙酸盐),将所有概念的所有概念扩展到了进一步的详细说明。标题材料是对急需的循环闭环可回收塑料的潜在解决方案,如果丢失了环境,也将在数十年内持续存在。
体育活动是一种重要的生活方式,对身体健康有积极影响。通过积极参与体育活动,我们可以改善心血管健康,增强肌肉力量,增加代谢功能并获得许多其他好处。体育活动对心血管系统有益。有氧运动,例如跑步,游泳和骑自行车,可改善心脏功能和血液循环,并降低心血管疾病的风险(Carmody和Bisanz,2023; Van Hul和Cani,2023年)。中度有氧运动降低血压,改善血脂水平并增加心脏的耐力。骨骼健康:体育活动对于骨骼健康至关重要。重力负载的活动,例如跑步,跳跃和举重,促进了骨密度的增加并降低了骨质疏松症的风险(Campbell等,2021; Lulla等,2022)。此外,体育锻炼有助于改善平衡和协调,减少跌倒和断裂的风险。体育锻炼会增强肌肉力量和灵活性。通过力量训练,例如举重和体操,可以增加肌肉质量,可以提高代谢率,并且可以改善身体形状(Arnoriaga-Rodríguez等人,2021年)。同时,拉伸会增加肌肉的灵活性和运动范围,减少肌肉和关节不适。其他好处:体育活动与许多其他好处有关。它可以帮助控制体重并降低糖尿病和某些癌症等慢性疾病的风险。此外,体育活动可提高睡眠质量,提高能量水平并促进大脑功能和认知性能(Liu等,2019)。近年来,肠道微生物组的体育活动关联一直是研究的广泛关注。肠道微生物组是生活在人类肠道中的微生物群落,并包含大量的微生物,例如细菌,真菌和病毒。他们在人类健康和免疫功能中起着重要作用(Aron- Wisnewsky等,2020)。作为一种生活方式,体育锻炼对肠道微生物组的组成和功能有积极的影响。研究表明,体育活动促进了肠道微生物组的多样性。多样性是指微生物组中不同物种的微生物的数量和比例(Barton等,2017; Carbajo-Pescador等,2018)。通过运动,我们可以通过增加有益细菌的数量并减少有害细菌的生长来改善肠道环境。有益细菌的增加有助于维持肠道的平衡状态,增强免疫系统功能并降低炎症性疾病的风险(De等,2021)。此外,体育活动增加了肠道微生物组的代谢活性。研究发现,运动可以改变肠道微生物组的代谢产物,例如短链脂肪酸(SCFA)。SCFA是通过肠道微生物组发酵饮食纤维生产的,对于肠道健康至关重要。它们为肠道细胞提供能量,维持肠粘膜屏障的完整性(Fiuza-Luces等,2018),并具有抗炎和抗肿瘤作用。体育活动可以增加运动后肠道微生物组产生的SCFA量,从而进一步促进肠道健康(Cheng等,2022)。
摘要:氧化应激是神经退行性,认知衰老,COG -NISTIS下降和认知寿命降低的关键因素。与认知和其他领域有关的氧化应激引起的问题,例如炎症,皮肤健康,眼睛健康和一般恢复,都显示出可从抗氧化剂使用中受益匪浅。astaxanthin是一种有效的抗氧气,概述在体外和体内都对认知功能有益。鉴于上述有希望的效果,最近对astaxanthin的研究已扩展到人类组织和人类种群。目前的批判性审查探讨了脂肪素对人类群和样本中认知功能和神经退行性的影响,目的是破译研究发现的优点和信誉,并随后作为治疗用途的基础。还讨论了未来研究开发的含义,局限性和领域。关键发现包括与改善认知功能,促进神经保护作用以及在给定情况下减慢神经变性相关的积极影响。
正电子发射断层扫描(PET)与放射性示踪剂结合与突触囊泡糖蛋白2 a(SV2A)的结合,可以量化活着的人脑突触密度。评估突触密度损失的区域分布和严重程度将有助于我们对神经退行性萎缩之前的病理过程的理解。In this systematic review, we provide a discussion of in vivo SV2A PET imaging research for quantitative assessment of synaptic density in various dementia conditions: amnestic Mild Cognitive Impairment and Alzheimer ' s disease, Frontotemporal dementia, Progressive supranuclear palsy and Corticobasal degeneration, Parkinson ' s disease and Dementia with Lewy bodies, Huntington ' s疾病和脊椎没共济典礼。我们讨论了有关群体差异和临床认知相关性的主要发现,并探索SV2A PET与病理学的其他标志之间的关系。此外,我们谈到了健康衰老和放射性示意剂验证研究结果中的突触密度。在2018年至2023年之间在PubMed和Embase上确定了研究;最后一次于2023年7月3日搜索。总共包括36项研究,包括正常老化,21个临床研究和10项验证研究的5个研究。提取的研究特征是参与者的细节,方法论方面和关键发现。总而言之,关于体内SV2A PET的小但不断增长的文献揭示了各种神经退行性疾病之间突触密度损失的不同空间模式,这些模式与认知功能相关,支持SV2A PET成像的潜在作用,以进行不同的诊断。SV2A PET成像显示出对神经退行性疾病的病因的新见解,并作为突触密度还原的生物标志物的巨大希望。提出了针对未来突触密度研究的新方向,包括(a)临床前痴呆症患者同类群中的纵向成像,(b)突触密度损失到其他病情逻辑过程中的多模式映射,以及(c)监测治疗反应并在临床试验中评估药物效率。
微RNA(miRNA)是通过mRNA的降解或翻译抑制来调节基因表达的短(〜21 nt)非编码RNA。积累证据表明miRNA调节在多种神经退行性(ND)疾病的发病机理中的作用,例如,例如阿尔茨海默氏病,帕金森氏病,帕金森氏病,肌萎缩性侧面硬化症和亨廷顿病(HD)。几项旨在探讨miRNA调节在NDS中的作用的系统级别研究,但这些研究仍然具有挑战性。该问题的一部分可能与缺乏足够丰富或同质的数据有关,例如时间序列或在模型系统或人类生物样本中获得的细胞类型的数据,以说明上下文依赖性。该问题的一部分也可能与与miRNA和mRNA数据的准确系统级建模相关的方法学挑战有关。在这里,我们批判性地回顾了用于分析表达数据的机器学习方法的主要家族,强调了使用形状分析概念作为精确建模高度尺寸的miRNA和mRNA数据的添加价值,例如在研究HD过程中获得的概念,并详细介绍了这些概念和方法的潜在方法和方法来对这些概念和方法进行建模复杂的复杂信息数据。
多酚代谢物在芳族环上具有几个羟基。类黄酮是具有多种治疗作用的多酚的主要自然基团。theaflavin及其衍生物(曲夫蛋白3-食道,theaflavin 3,3'-二瓜和theaflavin 3'-gallate)作为红茶的主要多酚之一,表现出令人鼓舞的抗癌,抗炎,抗炎性,抗生素,抗毒剂和抗神经脱发的活性。这种生物活性化合物具有减轻冠心病的潜在能力,并对骨矿物质密度产生愈合影响。癌细胞和细菌中耐药性的出现导致更多的努力找到了新型有效的抗癌和抗菌剂。此外,最近的研究旨在减少与化学疗法和抗菌剂有关的严重副作用。对于神经退行性疾病,例如阿尔茨海默氏症,多发性硬化症和帕金森氏症,当前昂贵的药物的低效率是治疗这些疾病的主要问题。在这方面,发现和设计新的抗神经退行性药物是可分配的。
1得克萨斯大学里奥格兰德分校背景糖尿病性视网膜病(DR)仍然是美国人时代失明的主要原因。尚未有任何有效的治疗方法可以防止病情发作,只是治疗后期疾病。对疾病早期迹象的研究表明,视网膜神经层的变化是最早的疾病迹象,是在当前定义DR的血管变化之前。这引起了人们对DR涉及的神经变性的发病机理的兴趣。本综述解释了当前对DR中神经元变性的细胞和分子机制的理解,以及针对每种机制研究的潜在药理干预措施。方法进行了文献综述,以查看已定义并与DR相关的神经变性的每个主要细胞和分子途径,有关药理学干预措施的最新研究以及视网膜神经细胞与糖尿病中的微腔之间的关系,以促进神经变性。文章来自PubMed或最新的文章。结果多元醇,PKC,己胺和年龄途径已显示在高血糖中上调。多元途径描述NADPH,这是谷胱甘肽再生所必需的。神经细胞变得无法忍受ROS。果糖和山梨糖醇积聚在细胞中,导致肿胀。epalrestat,FDA批准糖尿病神经病以靶向醛糖还原酶,具有DR的潜力。PKC和rage途径促进了产生ROS的NADPH氧化酶。PKC-抑制剂Ruboxistaurin一直在临床试验中治疗糖尿病性视网膜病。己糖胺途径中间葡萄糖对线粒体有毒,并促进过氧化葡萄糖。benfotiamine,一种B1衍生物,可能会抑制年龄,PKC和六胺途径。dm会导致pro-nGF/ngf比率的不平衡,从而促进凋亡。NGF眼滴显示通过标准化比例来治疗DME的希望。BDNF比率也以相同的方式影响。持续补充BDNF会抑制光感受器的死亡,但是常规注射无效。DM发作后一周在视网膜组织中看到升高的TNF-升高,刺激外部凋亡。eTanercept,TNF-抑制剂,似乎会减慢DR的进展。高血糖下调用于神经元存活的PI3K/AKT途径。胰岛素促进了这种保护侵蚀凋亡的途径,但同时促进了凋亡。muller细胞和小胶质细胞被高血糖激活并释放炎症介质并引起谷氨酸兴奋性毒性。Muller细胞激活在DM发作后1.5个月,在6周内瞬时BBB分解以及胶质反应性提高。tau调节是由星形胶质细胞介导的。异常TAU引起星形胶质细胞功能障碍并导致神经元死亡。一生氧化物被ROS形成毛的硝酸盐并创造神经毒性环境而被灭活。VEGF促进了低水平的神经元存活,但通过高水平的BDNF和GNDF降解而凋亡。升高的ROS可促进VEGF并抑制其保护作用。结论已经描述了细胞和分子的糖尿病性视网膜血管病之前神经退行性的几种机制。许多研究详细介绍了导致视网膜血管病的神经退行性途径的潜力。继续研究哪种机制是开发有效治疗以防止DR发作的必要条件。
数字健康技术(DHTS)可以在日常工作中量化运动,但严重依赖于长时间磨损时间的参与者依从性。在这里,我们在一项纵向研究中分析了329名患有肌萎缩性侧索硬化症(ALS)的人进行的经过规定的练习(PES)的加速度计数据。我们开发了一种自动化和可解释的信号处理方法,以估计PES期间重复的上肢运动计数,持续时间,强度和相似性。上肢挥杆持续时间增加,而运动的强度和相似性随着时间的推移而下降,表明较长但剧烈且一致的上肢运动随着时间而言较少。强度是上肢功能变化的最强大预测指标。结果表明,PE可以有效地量化上肢功能,可与某些自由生活测量值相当,从而在DHT的临床应用中具有更大的灵活性。
神经细胞死亡是人类神经退行性疾病的中心方面。结果中的神经元死亡导致各种人类神经系统疾病的发作,例如阿尔茨海默氏病,帕金森氏病,亨廷顿氏病,肌萎缩性的侧面硬化症和中风。在发育中的神经元中,假定细胞凋亡可以抵消过度调查细胞复制。许多信号可能诱导神经元中的凋亡,例如缺乏神经营养因子支持,代谢胁迫和氧化应激水平的增加以及谷氨酸受体的过度刺激(导致钙涌入)。细胞死亡和神经系统疾病与氧化应激有关,这在抗氧化剂防御与自由基产生之间造成了不平衡。在本文中,已经讨论了神经退行性疾病中氧化应激,神经元凋亡和线粒体功能障碍的全面摘要。抗氧化剂治疗对人类神经退行性疾病的潜在援助仍然有争议,尽管鼓励了临床前研究结果。阐明这种差异可能是评估大脑中氧化应激的准确方法的不存在。神经退行性研究中凋亡研究的爆炸是源于这样的概念,即说服神经元凋亡死亡可能对疾病的进展至关重要,并且抗凋亡方法可能有助于预防神经变性过程。对凋亡在神经退行性过程中起作用的作用有更深入的了解将是对重点,有效治疗方式发展的未来研究的基础。
法国蒙彼利埃 6. 华盛顿大学医学院医学系,美国密苏里州圣路易斯 63110 7. C2N Diagnostics,美国密苏里州圣路易斯 20 S Sarah St 63108 8. 德克萨斯大学奥斯汀分校戴尔医学院神经病学系,美国德克萨斯州奥斯汀 9. 英国伦敦大学学院痴呆症研究所 10. 瑞典默恩达尔萨尔格伦斯卡大学医院临床神经化学实验室 11. 神经科学与生理学研究所精神病学和神经化学系,