纳米粒子(NPs)具有稳定性、生物相容性、血液循环、免疫原性和控制药物释放的能力,已被广泛应用于疾病治疗中的药物输送。由于吞噬细胞的特性,NPs在体内可以被吞噬细胞优先吸收,实现吞噬细胞靶向药物输送而不影响其他细胞的功能,成为药物输送的新方向。吞噬细胞,例如巨噬细胞,是最重要的先天免疫细胞,参与各种炎症相关疾病的病理过程,使巨噬细胞成为开发新型诊断成像和疾病治疗的重要靶点。因此,越来越多的研究将NPs用于巨噬细胞靶向药物输送。在这篇综述中,我们介绍了目前针对特定巨噬细胞靶向的NPs的改造策略及其在炎症疾病中的应用,为未来开发/优化巨噬细胞靶向NPs提供基础。
- Sars-Cov-2 PCR(辅助测试名称:2019 年新型冠状病毒或 COVID-19) - RSV PCR - 登革热/比丘恩 RT-PCR - 寨卡 RT-PCR - 流感 A/H799 - MERS RT-PCR(辅助测试:中东呼吸综合征 RT-PCR) - 非天花 Pcr(辅助测试名称:非天花正痘病毒)GG - 寨卡病毒 Igm - NGDs 战士面板(埃博拉病毒、马尔堡病毒、炭疽杆菌冠状病毒 Hku1、冠状病毒 NL63、严重急性呼吸道综合征冠状病毒 2 (Sars-Cov-2)、人鼻病毒、流感 A/H1、流感 a 病毒 A/H3、流感 a 病毒 A/H1-2009、流感 b
本文探讨了影响口服给药药物生物利用度的生理和药学障碍,以及为增强口服药物吸收而探索的不同药学技术和药物输送系统。本文还探讨了药物输送到淋巴系统的优势和局限性,并介绍了这种方法的未来方向和挑战。具体来说,本文强调了药物输送到淋巴系统有望提高药物的生物利用度和疗效。它强调了将药物输送到淋巴系统的优势,包括增强药物溶解度、稳定性、淋巴运输和靶向特定淋巴管的能力。本文进一步探讨了该领域的未来方向,例如开发新配方、靶向特定淋巴管和联合治疗。然而,本文承认淋巴药物输送方法的临床转化面临重大挑战。监管障碍、安全问题以及成本和可扩展性是需要解决的重要障碍。该论文最后强调了解决这些挑战以及促进进一步研究和合作以优化淋巴药物输送的临床转化的重要性。
将阳离子辅助脂质添加到脂质纳米颗粒(LNP)中可以增加肺部递送并减少肝脏递送。然而,尚不清楚电荷是普遍的,还是取决于收取的组件。在这里,我们报告了阳离子胆固醇 - 依赖性的乳化性向乳头辅助脂质 - 依赖依赖性的偏向主义的证据。通过测试196 LNP如何将mRNA传递到22种细胞类型的方式,我们发现带电的胆固醇导致了与带电的助手脂质相比,肝脏递送比率不同。我们还发现,将阳离子胆固醇与阳离子辅助脂质结合在一起,导致心脏中的mRNA递送以及包括干细胞(包括干细胞)的几种肺细胞类型。这些数据突出显示了探索电荷的实用性 - 依赖性LNP TROPISM。
转录后基因沉默 (PTGS) 是了解和控制植物代谢途径的有力工具,是植物生物技术的核心。PTGS 通常通过将小干扰 RNA (siRNA) 递送到细胞中来实现。标准的植物 siRNA 递送方法(农杆菌和病毒)涉及将 siRNA 编码到 DNA 载体中,并且仅适用于某些植物物种。在这里,我们开发了一个基于纳米管的平台,用于直接递送 siRNA,并在完整的植物细胞中显示出高沉默效率。我们证明纳米管成功递送 siRNA 并沉默内源基因,这归功于有效的细胞内递送和纳米管诱导的保护 siRNA 免受核酸酶降解。这项研究表明,纳米管可以实现大量依赖于 RNA 递送到完整细胞的植物生物技术应用。
摘要:纳米生物聚合物(如壳聚糖、明胶、透明质酸、聚谷氨酸、脂质、肽、外泌体等)输送系统有望解决将 siRNA 药物输送至实体肿瘤(包括乳腺癌细胞)时遇到的生理困难。纳米生物聚合物具有良好的刺激响应特性,因此可用于改进 siRNA 输送平台,以输送至无法用药的 MDR 转移性癌细胞。这些生物聚合物 siRNA 药物可以保护药物免受 pH 降解、细胞外运输和非靶向结合位点的影响,因此适合以控释方式进行药物内化。本综述将讨论多种生物聚合物化合物(如 siRNA 药物输送系统)在 MDR 实体肿瘤(包括乳腺癌)中的应用。
小鼠乳腺由导管树组成,导管树内衬上皮细胞,每个乳头顶端都有一个开口。上皮细胞在乳腺功能中起着重要作用,是大多数乳腺肿瘤的起源。将感兴趣的基因引入小鼠乳腺上皮细胞是评估上皮细胞基因功能和生成小鼠乳腺肿瘤模型的关键步骤。这一目标可以通过将携带感兴趣基因的病毒载体注射到小鼠乳腺导管树中来实现。注射的病毒随后感染乳腺上皮细胞,带来感兴趣的基因。病毒载体可以是慢病毒、逆转录病毒、腺病毒或腺病毒相关病毒 (AAV)。这项研究展示了如何通过小鼠乳腺导管内注射病毒载体将感兴趣的基因传递到乳腺上皮细胞中。携带GFP的慢病毒用于显示传递基因的稳定表达,携带Erbb2(HER2/Neu)的逆转录病毒用于显示致癌基因诱导的非典型增生性病变和乳腺肿瘤。
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2022 年 10 月 13 日发布了此版本。;https://doi.org/10.1101/2022.10.10.510523 doi:bioRxiv 预印本
立方体的合成无功能立方体(Cub unfun ;由 GMO、尼罗河红和 F127 组成的空立方体)和空白立方体(Cub blank ;未经功能化的 PEG 化阳离子立方体,由 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红和 F127 组成)的制备采用之前发表的方法并进行了一些修改 [1]。将 GMO、DSPE-PEG-Mal、DOTAP、尼罗河红、helenalin、SPION 溶解在乙醇中并充分涡旋混合(表 S1)。在 70 °C 的真空条件下在加热块中蒸发有机溶剂,然后在 N 2 气流下进一步干燥。将脂质混合物冷冻干燥过夜。然后将 2 微克/毫升 Pluronic F127(溶于 PBS)加入干脂质中,然后以 20 kHz 的频率进行超声处理,开启 5 秒,关闭 5 秒,持续 5 分钟。为了将未封装的化合物(如 helenalin 和 Nile Red)从立方相分散体中分离出来,使用 10 kDa MWCO Slide-A-Lyzer MINI 透析装置(Fisher Scientific Ltd,拉夫堡,英国)对溶液进行透析 2 小时。对于抗体结合,将 5 µg 抗 CD221 抗体与 50 ng Traut 试剂(Sigma Aldrich,吉林汉姆,英国)在磷酸盐缓冲液(0.1 M,2 mM EDTA,pH 8.0)中在室温(RT)下反应 1 小时进行硫醇化,导致 -SH 基团附着到完整的抗体上 [2]。或者,抗 CD221 抗体通过与 10 mM DTT 在室温下反应 2 小时在铰链区处被切割。反应结束后,通过 10 kDa MWCO 透析 2 小时从硫醇化抗体或半抗体中去除残留化学物质 [3]。纯化的硫醇化抗体或半抗体通过抗体的-SH 基团和立方体上的马来酰亚胺基团之间的硫醇-马来酰亚胺迈克尔反应过夜结合到 Cub 空白中,形成 Cub wh-Ab 或 Cub ha-Ab 。对于透明质酸 (HA) 结合,将不同体积的 1 mg/mL 透明质酸与 Cub 空白在室温下孵育 4 小时,产生 Cub 1-5%HA 。我们在溶剂蒸发之前将不同量的 SPION 掺入脂质混合物中,并通过超声处理生成 Cub 1-5%ION。通过将半抗体与 Cub 1%ION 结合,再与 HA 连接,合成三功能立方体 (Cub fun)。立方体中海伦那林的包封率 (EE) 是通过将载有海伦那林的立方体经 10 kDa MWCO 透析后用乙醇溶解,并通过液相色谱 (LC) 定量 NPs 中包封的海伦那林,然后将包封的海伦那林的量除以海伦那林的总量并乘以 100 来计算的。海伦那林的释放率是通过从 100 中减去 EE 来评估的。
我们在此报告了首次证明穿梭肽在恒河猴模型中将蛋白质和 ABE8e-Cas9 RNP 递送至呼吸道上皮的转化潜力。在单次气雾剂给药后,我们成功地将荧光标记的蛋白质货物递送至大气道和小气道的上皮细胞以及一些肺泡上皮。使用 S315 穿梭肽进行 ABE8e-Cas9 RNP 递送,我们在使用支气管刷回收的细胞中实现了 CCR5 基因座的显著 A 到 G 编辑。从气管和近端气道收获的上皮中 CCR5 位点的编辑效率达到 5.3%。在具有 R553X 突变的人类 CF 气道上皮中应用这种递送方法实现了类似的编辑水平并赋予 CFTR 功能的部分恢复。