轴导致循环中糖皮质激素的分泌,该糖皮质激素与体内许多细胞中的糖皮质激素受体结合[2]。由于糖皮质激素受体是核受体,因此它们的活化会导致细胞核的表观遗传和转录变化[3]。pe-尤其对压力特别敏感,并且在这些时期,大脑的敏感性提高了。本综述着重于在这些时期内慢性应激(CS)的影响。大多数提出的发现源自啮齿动物的模型,在这种模型中,CS是由诸如克制或强迫游泳之类的身体挑战引起的,或者是社会挑战,例如早期生活中的孕产妇分离或成年后的社会失败。在最严重的范式中,压力源是不可预测的,这会增强其对动物的影响。
我们提出了一种新颖的“混合”活动/被动触觉设备,可以改变形状,以作为VR中一系列虚拟对象的代理。我们将适应性与触觉重新定位一起重定向用户的手重定向,以提供仅使用单个道具触及的几个虚拟对象的触觉反馈。为了评估适应性通过触觉重新定位的有效性,我们进行了一个受试者内实验,采用对接任务将适应性与非匹配的代理对象(即造泡沫球)进行比较和匹配的形状支柱进行比较。在我们的研究中,Adaptic坐在用户前面的桌子上,并改变了grasps之间的形状,为放置在不同虚拟位置中的各种虚拟对象提供匹配的触觉反馈。结果表明幻觉令人信服:用户认为他们正在使用单个自适应设备在不同的虚拟位置操纵几个虚拟对象。与适应性的对接性能(综合时间和精度)与没有触觉重新定位的道具相当。
弧菌物种是海洋原核生物,居住在多种生态壁ches,定居非生物和生物表面。这些细菌是全球碳循环中的重要参与者,吸收了数十亿吨的碳(和氮)代谢物。对包括几丁质酶,糖转运蛋白和修饰酶的过程的许多细菌蛋白进行了很好的研究。然而,在存在几丁质的存在下,遗传功能相互作用和主要驱动因素是主要的碳源。为了解决这个问题,我们进行了转座子测序(TN-Seq),以确定在几丁质上生长在几丁质上作为唯一碳源的颤动性溶血性突变体的遗传适应性。以及验证与几丁质代谢相关的已知颤音基因,我们的数据新确定了未分类的OPRD样进口壳质蛋白和HEXR家族转录调节剂的重要作用。此外,我们在功能上暗示了HEXR在调节副溶血性环境生存的多个生理过程中,包括碳同化和细胞生长,生物膜形成和细胞运动。在营养限制条件下,我们的数据揭示了对丝状细胞形态中HEXR的要求,这是副溶血性环境适应性的关键特征。因此,由HEXR介导的重要进口孔蛋白和基因组调节支持多个生理过程,以实现弧菌念珠菌的生长和环境适应性。
然而,当动眼控制恶化时,凝视跟踪设备的使用受到阻碍,因为最终发生在ALS的进展中,或者脑病变会影响眼部迁移率。在称为完全锁定状态(CLIS)[7]的条件下,眼睛运动可能会完全丢失。对于这些患者,维持沟通的唯一机会是依靠其他系统,例如基于EEG信号来控制AAC设备。这些方法通常称为大脑计算机界面(BCIS)[8]。在与某些BCI的与CLIS患者沟通方面的部分成功,尤其是基于事件相关电位的BCI [9,10]。但是,这些系统需要相对较长的准备工作以及专门的AAC促进者的存在,并且学习曲线困难,因为患者必须了解对特定生理信号的适当控制[11]。此外,它们通常非常昂贵。因此,需要更简单,更适合患者的方法。
此预印本版的版权持有人于2025年3月3日发布。 https://doi.org/10.1101/2025.02.28.640855 doi:Biorxiv Preprint
1译本免疫学部门,巴黎大学的巴黎大学,巴黎,法国,法国2的研究和教育博士学位课程的创新前沿,法国巴黎LPI博士学校的性别和性别注释:这篇评论讨论了人口差异,包括性别差异。性别是指女性和男性的生物学和生理特征。它与性别不同,这是一种社会,心理和文化结构。性别和性别都存在于频谱上。本文只会使用“女性”或“男性”一词来解决性别,以指出出生时分配的性别。性别的生物学特征不是相互排斥的,因为有些人具有男性和女性特征,并且可以改变。在性范围内的个体的生物学是并且应该研究的,但是我们仍然缺乏本综述范围所必需的工作体系[1]。*信函:达拉格·达菲(Darragh Duffy),转化免疫学部门,巴斯德大学(Institut Pasteur),巴黎大学,法国75015巴黎,巴黎。电子邮件:darragh.duffy@pasteur.fr
无刺的蜜蜂是热带地区多样化和生态上重要的传粉媒介。劳动分裂允许蜜蜂菌落满足其社会生活的各种需求,但在所有描述的无刺蜜蜂物种中,只有3%的人进行了研究。可用的数据表明,与其他社会蜜蜂相比,劳动分工显示出相似之处和引人注目的差异。工人年龄是许多物种中工人行为的可靠预测指标,而体大小的形态变化或大脑结构的差异对于某些物种的特定工人任务很重要。无刺的蜜蜂提供了确认劳动分工的一般模式的机会,但它们也提供了前景,以发现和研究Eusocial Bees中不同生活方式的新型机制。
该内容已被UAB数字共享的授权管理员所接受,并作为免费开放访问项目提供。有关此项目或UAB数字共享的所有查询,都应将其针对UAB图书馆学术通信办公室。
利益冲突作者宣布没有利益冲突。作者贡献SB和GD为论文开发了思想和概念。SB进行了实验,数据分析并领导论文的撰写。两位作者都为草稿做出了巨大贡献,并获得了发表的最终批准。致谢我们感谢同事,尤其是Natasha Tigreros博士的评论和讨论,改善了该项目的方向。我们感谢亚利桑那大学的毕业生和专业学生会项目资助。数据可访问性数据和软件代码可在Dryad上找到:doi:10.5061/dryad.b8gtht7j6
目的:本研究的目的是评估执行功能和前额叶氧合是否取决于老年人的健身水平和年龄。方法:招募了55至69岁的二十四名健康男性。他们按年龄进行了分层,导致了两组的创建:55-60岁和61-69岁。基于CRF的中位数拆分会创建更高和较低拟合的参与者类别。在计算机化的Stroop任务中,使用功能近红外光谱(FNIRS)评估脑充氧。 准确性(正确响应的百分比)和反应时间(MS)用作认知表现的行为指标。 测量氧化(∆ HBO2)和脱氧(∆ HHB)血红蛋白的变化以捕获神经变化。 进行了重复测量方差分析(CRF X Age X Stroop条件),以测试CRF,年龄和执行绩效之间没有相互作用的零假设。 结果:我们还发现了CRF与年龄在反应时间上的相互作用(P = .001),其中较高的适应度水平与61-69岁的年龄在55-60岁的孩子中与更快的反应时间有关。 关于δHHB,ANOVA在右PFC中揭示了CRF的主要影响(P = .04),其中较高拟合的参与者的δHHB大于低拟合(d = 1.5)。 我们还发现右PFC中δHHB的年龄相互作用(p = .04)。 结论:我们的结果支持CRF在健康老年男性中脑充氧和StrOP性能的正相关。脑充氧。准确性(正确响应的百分比)和反应时间(MS)用作认知表现的行为指标。测量氧化(∆ HBO2)和脱氧(∆ HHB)血红蛋白的变化以捕获神经变化。进行了重复测量方差分析(CRF X Age X Stroop条件),以测试CRF,年龄和执行绩效之间没有相互作用的零假设。结果:我们还发现了CRF与年龄在反应时间上的相互作用(P = .001),其中较高的适应度水平与61-69岁的年龄在55-60岁的孩子中与更快的反应时间有关。关于δHHB,ANOVA在右PFC中揭示了CRF的主要影响(P = .04),其中较高拟合的参与者的δHHB大于低拟合(d = 1.5)。我们还发现右PFC中δHHB的年龄相互作用(p = .04)。结论:我们的结果支持CRF在健康老年男性中脑充氧和StrOP性能的正相关。他们表示,高适合个人在61-69岁的小组中表现更好,但在55-60岁的小组中却没有。我们还观察到高拟合个体中的PFC氧合变化较大(通过ΔHHB测量)。