Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液
图5。(a)在训练数据下推断a。该模型在图。1a和训练有素的NNFM对线路左侧的数据的预测如下所示。nmae = 0.162。(b)推断上述训练数据。nmae = 0.112。(c)在训练数据下方外推s。nmae = 0.057。(d)在训练数据上方推断s。nmae = 0.027。在每个图中,从图中所示的参数范围的每个边缘删除了10%的数据1a,被排除在培训集外。NNFM经过剩余90%数据的训练。每个点的颜色表示SDD,如图3
N.V. Borzova,L.D。 varbanets分布,性质和α-半乳糖苷酶的实际意义。 微生物学期。 2024,N.V. Borzova,L.D。varbanets分布,性质和α-半乳糖苷酶的实际意义。微生物学期。2024,
2凸式23 2.1基础:压缩感应。。。。。。。。。。。。。。。。。。25 2.1.1凸介:原理。。。。。。。。。。。。。。。。25 2.1.2直觉。。。。。。。。。。。。。。。。。。。。。。。。。。25 2.1.3在有限的等轴测图下保证紧密度。。。。。29 2.2低级矩阵恢复。。。。。。。。。。。。。。。。。。。。30 2.2.1凸质:原理。。。。。。。。。。。。。。。。。。。。31 2.2.2在受限的等轴测图下保证紧密度。33 2.2.3没有限制等轴测的问题。。。。。。。。。。35 2.3超分辨率。。。。。。。。。。。。。。。。。。。。。。。。。。40 2.3.1通过总变化规范进行凸介。 。 。 40 2.3.2无限制的等轴测特性。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.3.3通过双证书正确性。 。 。 。 。 。 。 。 。 。 。 。 。 4440 2.3.1通过总变化规范进行凸介。。。40 2.3.2无限制的等轴测特性。。。。。。。。。。。。。43 2.3.3通过双证书正确性。。。。。。。。。。。。。44
逆增强学习(IRL)由于其有效性从专家的演示中恢复奖励功能的有效性,因此一直在接受大量的研究工作,这些奖励功能可以很好地解释专家的行为。在实际应用中,约束无处不在,与一组约束相比,奖励功能比单个奖励功能更好地解释了复杂的行为(Malik等,2021)。因此,提出了逆约束强化学习(ICRL)以从专家的示范中学习限制。IRL上的最新目前(Fu等,2018; Imani&Ghoreishi,2021)和ICRL(Scobee&Sastry,2019年)可以在不受约束的环境中学习奖励功能,或者可以推断出与获得地面真相奖励但不能推断出两者的约束。为了解决这一挑战,提出了分布式ICRL(Liu&Zhu,2022)来学习专家的奖励功能和约束。在本文中,我们遵循(Liu&Zhu,2022)中的ICRL的定义,这意味着学习专家的奖励功能和约束。