摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同的设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间整流罩区域的视觉上可区分的曲线。介绍了两个关于 B-29 和 B-737 的案例研究,展示了如何近似其机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与其原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,以增强飞机概念设计和飞行性能优化研究。
摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间的整流罩区域的视觉上可区分的曲线。介绍了 B-29 和 B-737 的两个案例研究,展示了如何近似机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,将增强飞机概念设计和飞行性能优化研究。
本综述承认了 Stephan Perren 的应变理论的巨大影响,并结合 Roux 和 Pauwels 的早期贡献进行了探讨。然后,通过研究反向动力化概念如何在现代背景下扩展 Perren 的理论,提供了进一步的见解。这一更现代的理论的一个关键因素是它在骨愈合过程中的不同时间点引入了可变的机械条件,从而有可能通过力学操纵生物学来实现预期的临床结果。讨论重点是当前的技术水平和最新进展,通过在愈合过程中主动控制机械环境来优化和加速骨再生。反向动力化采用非常特殊的机械操纵方案,最初条件灵活,以鼓励和加速早期骨痂形成。一旦骨痂形成,机械条件就会被有意修改,以创造一个刚性环境,在此环境中,软骨痂会迅速转化为硬骨痂,连接骨折部位并导致更快的愈合。调查了相关文献,主要是动物研究,以提供充足的证据来支持反向动力化的有效性。通过为 Stephan Perren 的应变理论提供现代视角,反向动力化或许是治疗急性骨折、截骨术、不愈合和其他需要再生骨骼的情况时实现更快更可靠的愈合的关键。
摘要:各种形貌和化学性质的纳米材料广泛用于光子装置、高级催化剂、水净化吸附剂、农用化学品、药物输送平台以及成像系统等等。然而,寻找满足特定需求、具有所需结构、形状和尺寸的定制纳米材料的合成路线仍然是一个挑战,而且通常通过手动筛选研究文章来实现。在这里,我们首次通过迁移学习 (TL) 开发了扫描和透射电子显微镜 (SEM/TEM) 反向图像搜索和基于手绘的搜索,即 VGG16 卷积神经网络 (CNN) 重新用于图像特征提取和随后的图像相似性确定。此外,我们展示了该平台在碳酸钙系统上的案例使用,其中通过随机高通量多参数合成获得了足够量的数据,以及从文章中提取的金纳米颗粒 (NPs) 数据。该方法不仅可用于先进纳米材料的搜索和合成程序验证,还可以进一步与机器学习(ML)解决方案相结合,提供数据驱动的新型纳米材料发现。
石器时代、青铜器时代和铁器时代是人类开始掌握这些自然界材料的历史时期。但是,如果我们只需按照需要排列原子,就能制造出具有特定特性的新材料,那会怎样呢?早在 1960 年,理查德·费曼就挑战我们“自下而上”思考,通过引导和操纵单个原子的排列来创造新材料 1。他邀请我们进入一个全新的物理学领域,在那里我们可以前所未有地控制新材料的性质和功能。虽然这在当时只是一个遥不可及的梦想,但现代实验合成技术的进步和纳米技术的革命已经让我们非常接近实现这个梦想。实现这一目标的一个有希望的方法是分层自组装,单个粒子自发组织成有序结构,也是自然界形成复杂生物功能结构的最重要策略。在这个过程中,材料的制备过程是先将原子组装成分子,再将分子组合成更大的单元,尺寸从几纳米到几微米不等,最后让这些悬浮在液体中的胶体结构块自组织成三维有序结构。这些自组装材料具有数十至数百纳米尺度的明确结构和极大的表面积体积比——这些特性使它们不仅非常适合光电、等离子体和光子应用,还非常适合催化和储能。这一策略的成功实施取决于合成和制造新型纳米颗粒和胶体颗粒的能力。尽管最近的进展已经产生了各种各样的新结构单元,这些单元的相互作用潜力可以从硬的到软的排斥的、吸引的、偶极的、形状各向异性的、不均匀的甚至自推进的,但尽管人们为开发新的合成路线付出了巨大的努力,但与化学家的分子“工具包”相媲美的无数可能的胶体结构单元中只有一小部分被制造出来。 提供更多关于胶体相互作用细节的评论包括参考文献 2 – 7 。 为了加速材料科学的进步,最好用理论预测来指导实验工作,以便
量子理论通常被表示为一种预测理论,其关于测量结果概率的陈述基于先前的准备事件。在回溯量子理论中,这个顺序被颠倒了,我们试图利用测量结果来对早期事件做出概率陈述[1-6]。该理论最初是在时间反演对称性的背景下提出的[1-3],但最近已发展成为分析量子光学实验[7-15]和连续监测[16-22]和成像[23]等领域的实用工具。回溯量子理论的发展一直伴随着争议。其根源在于概率的性质和状态向量的解释等深刻的问题。我们借鉴早期的一套讲义[6],回顾了回溯量子理论,特别关注其基本原理。然后,我们提出一些论据,这些论据旨在限制量子回溯的适用性、对其进行修改或质疑其有效性,并解决每个论据背后的问题。(严格来说,正如 Belinfante [ 3 ] 所倡导的,后验可能比回溯更为准确,但回溯是我们主题的原始名称,我们坚持使用它。)我们的结论是,量子回溯与贝叶斯概率概念密切相关。事实上,我们可以在传统预测量子理论加上贝叶斯定理 [ 5 ] 的基础上推导出量子回溯(另见 [ 24 ])。在文献中,可以找到写为 Bayes' 和 Bayes' 的所有格形式。后者在语法上可能更正确,但我们更喜欢前者,因为它听起来更好。重要的是要认识到,我们的方法植根于贝叶斯对概率的解释。显然,采用贝叶斯观点的决定使我们在量子理论中对状态向量或波函数的性质采取了特定的哲学立场。如果我们要保留量子理论中概率源自状态向量的概念,以及贝叶斯思想,即能够访问不同信息的个人会分配不同的概率,那么在量子理论中,我们也必须为量子系统分配不同的状态。这与波函数具有任何本体论意义(真实存在)的概念相矛盾。如果一个人开始
摘要 视网膜图像不足以确定“外面”是什么,因为许多不同的现实世界几何形状都可以产生任何给定的视网膜图像。因此,视觉系统必须根据感官数据和先验知识(无论是天生的还是通过与环境的交互学习的)推断出最有可能的外部原因。我们将描述我们和其他人用来探索皮质间反馈在视觉系统中的作用的“分层贝叶斯推理”的一般框架,我们将进一步论证这种“观察”方法使我们的视觉系统容易以各种不同的方式出现感知错误。在这个故意挑衅和有偏见的观点中,我们认为神经调节剂多巴胺可能是执行贝叶斯推理的神经回路与精神分裂症患者的感知特质之间的关键联系。© 2021 S. Karger AG,巴塞尔
图 1 超声逆向 PCR (SIP) 的可视化表示。图中使用的缩写包括 KoRV — 考拉逆转录病毒、LTR — 长末端重复、pol — 聚合酶基因。 (a) 整合到考拉基因组 DNA 中的 KoRV 原病毒以典型的 LTR 区域 (绿色框) 和逆转录病毒基因 (蓝色框) 两侧的形式显示。注意:为简单起见,仅以图表形式表示 pol 基因 (红色框) 的大致位置。 (b) 使用超声处理将考拉基因组 DNA 碎裂成平均长度为 2-7 kb 的片段。然后对碎裂的 DNA 进行平端修复和磷酸化 (未显示)。 (c) 随后将样品分成两部分:非适配器组 (c1) 和适配器组 (c2)。非接头组在环化之前未进行任何修改,而接头组在 DNA 分子的两端连接有相同的接头序列(黄色框),用于辅助解释环化和扩增后的倒置扩增子序列。(d)接头组和非接头组均环化,从而产生环状 DNA 模板。(e)环状 DNA 模板用两组针对 KoRV 的 pol 和 LTR 区域的引物进行扩增。没有这些引物结合位点的环状模板不会扩增。(f)扩增和测序产物被倒置,引物结合位点位于扩增子的侧翼。产生了两种主要类型的 PCR 产物:(i)由 LTR 引物扩增的 PCR 产物和(ii)由 pol 引物扩增的 PCR 产物
图 2 [P 8 W 48 O 184 ] 40 −(缩写为 {P 8 W 48 })节点和过渡金属连接体(Co、Mn、Ni、Ag)的最小构建块库,形成 14 种 POM-全无机框架架构(即“ POMzite ”)。它们都共享 {P 8 W 48 } 构建块,具有简化的环表示(绿色),并具有四种结构组装类型:链(POMzite-4、9、10、14)、柱状(POMzite-5、6、8、11、13)、人字形(POMzite-2、7、12)和立方体(POMzite-3)。我们从迄今为止描述的 14 种 POMzite 架构中选择了 10 个代表性示例。到目前为止,已探索的实验数据集包含 30 个 POMzite 框架,但可访问的化学空间非常广阔。POMzite 结构经 Boyd 等人许可转载,[1] 美国化学学会