m--chardon@northwestern.edu 1 Neuroscience系,西北大学,伊利诺伊州芝加哥; 2美国加利福尼亚州洛杉矶的加利福尼亚州立大学电气和计算机工程系7分。 3 Argonne领导力计算设施,Argonne National 9实验室,美国伊利诺伊州Lemont; 4美国伊利诺伊州埃文斯顿市西北10大学电气工程系; 5美国伊利诺伊州芝加哥西北11大学生物医学工程系; 6英特尔公司,美国加利福尼亚州圣克拉拉;美国华盛顿州西雅图市华盛顿大学的12个生理学与生物物理学系7; 8实物13医学和康复,美国伊利诺伊州芝加哥的雪莉·瑞安(Shirley Ryan)能力实验室; 9物理疗法和人类运动科学,西北大学,伊利诺伊州芝加哥; 15 10美国伊利诺伊州埃文斯顿的西北 - 阿尔贡科学与工程学院(NAISE)16m--chardon@northwestern.edu 1 Neuroscience系,西北大学,伊利诺伊州芝加哥; 2美国加利福尼亚州洛杉矶的加利福尼亚州立大学电气和计算机工程系7分。 3 Argonne领导力计算设施,Argonne National 9实验室,美国伊利诺伊州Lemont; 4美国伊利诺伊州埃文斯顿市西北10大学电气工程系; 5美国伊利诺伊州芝加哥西北11大学生物医学工程系; 6英特尔公司,美国加利福尼亚州圣克拉拉;美国华盛顿州西雅图市华盛顿大学的12个生理学与生物物理学系7; 8实物13医学和康复,美国伊利诺伊州芝加哥的雪莉·瑞安(Shirley Ryan)能力实验室; 9物理疗法和人类运动科学,西北大学,伊利诺伊州芝加哥; 15 10美国伊利诺伊州埃文斯顿的西北 - 阿尔贡科学与工程学院(NAISE)16
量子控制在量子计算机的实际应用中起着不可替代的作用。然而,要找到更合适、更多样化的控制参数,必须克服一些挑战。我们提出了一种有前途且可推广的基于平均保真度的机器学习启发式方法来优化控制参数,其中使用具有周期性特征增强的神经网络作为拟设。在通过逆向工程实现猫态非绝热几何量子计算的单量子比特门时,与简单形式的三角函数控制参数相比,我们的方法可以产生保真度明显更高(> 99.99%)的相位门,例如π/ 8门(T门)。单量子比特门对系统噪声、加性高斯白噪声和退相干具有很强的鲁棒性。我们用数字证明了神经网络具有扩展模型空间的能力。借助我们的优化,我们提供了一种在玻色子系统中实现高质量级联多量子比特门的可行方法。因此,机器学习启发的方法在非绝热几何量子计算的量子最优控制中可能是可行的。
摘要 . 印度尼西亚实验动力反应堆 (RDE) 的基本设计参考了中国清华大学自 1995 年以来开发并于 2000 年 12 月首次通过评审的高温气冷反应堆测试模块 (HTR-10)。目前,核电站 (NPP) 行业控制系统市场使用微控制器和可编程逻辑控制器 (PLC)。然而,由于基于计算机的技术容易受到网络攻击、软件共因故障 (CCF) 和系统复杂性的影响,因此,RDE 设计的开发应根据最新技术考虑,并符合在维护核电站安全方面发挥重要作用的仪表和控制 (I&C) 系统的发展。本研究涉及基于 PLC 系统的 I&C 逆向工程程序,以从先前的设计中获得设计规范,从而通过使用现场可编程门阵列 (FPGA) 作为替代平台来考虑系统硬件,从而提高其可靠性。在开发逆向工程之前,应该分析为什么 FPGA 成为替代 PLC 系统的替代系统。逆向工程过程将涵盖基于模型的系统工程 (MBSE),这是一种正式的建模应用程序,用于支持系统需求、设计、分析、验证和确认 (V&V) 活动。该过程从概念设计、需求分析开始,持续
m-chardon@northwestern.edu 1 美国伊利诺伊州芝加哥西北大学神经科学系;2 美国加利福尼亚州洛杉矶加州州立大学电气与计算机工程系;3 美国伊利诺伊州莱蒙特阿贡国家实验室阿贡领导力计算设施;4 美国伊利诺伊州埃文斯顿西北大学电气工程系;5 美国伊利诺伊州芝加哥西北大学生物医学工程系;6 英特尔公司,美国加利福尼亚州圣克拉拉;7 美国华盛顿大学生理学和生物物理学系;8 美国伊利诺伊州芝加哥 Shirley Ryan 能力实验室物理医学与康复系;9 美国伊利诺伊州芝加哥西北大学物理治疗与人体运动科学系; 15 10 美国伊利诺伊州埃文斯顿西北大学-阿贡科学与工程研究所 (NAISE) 16
从单细胞活动中重建神经元网络连接对于理解大脑功能至关重要,但从大量静默神经元中破译连接这一难题在很大程度上尚未解决。我们展示了一种使用刺激结合监督学习算法来获取模拟静默神经元网络连接的协议,该协议能够高精度地推断连接权重,并高精度地预测单脉冲和单细胞水平的脉冲序列。我们将我们的方法应用于大鼠皮层记录,这些记录通过异质连接的漏积分和放电神经元电路馈送,这些神经元以典型的对数正态分布发声,并证明在刺激多个亚群期间性能有所提高。这些关于所需刺激数量和协议的可测试预测有望增强未来获取神经元连接的努力,并推动新的实验以更好地理解大脑功能。
简介:FM 收音机是一个非常有趣的话题!我听不清楚妈妈在厨房跟我说话。有些是选择性听力的一部分,特别是当她问作业的时候。但我能听到有人在全国各地现场唱歌。解释一下!我们 Srivastha 和 Soham 都是音乐系的学生。因此,通过无线电波传输的声音显然是一个令人着迷的课题。声音如何在如此长的距离内传输而不损失其质量?理论:我们将理论理解为声波首先由幅度或频率 (AM 或 FM) 调制,然后使用高功率天线传输。FM 接收器是一个微型电子电路,能够接收 FM 信号,消除噪音,然后放大并将其转换为人类可以听到的音频范围。我们想尝试从头开始构建它并亲自测试它的工作原理。什么是 FM 发射器?FM 发射器是一种使用非常低的功率运行并使用(频率调制)FM 波传输声音的电路。借助此类 FM 发射器,我们可以轻松地通过不同频率的载波长距离传输音频信号。这就是广播电台/塔的作用。载波的频率与具有幅度的音频信号的频率相同。FM 发射器产生从 88 HZ 到 108 MHZ 的 VHF 范围。
摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同的设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间整流罩区域的视觉上可区分的曲线。介绍了两个关于 B-29 和 B-737 的案例研究,展示了如何近似其机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与其原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,以增强飞机概念设计和飞行性能优化研究。
摘要。机身内部和外部规格是每个飞机制造商密集的智力努力和技术突破的产物。因此,表征飞机主要气动表面的几何信息仍处于保密状态。在尝试对真实飞机进行建模时,航空界的许多成员依靠他们的个人专业知识和通用设计原则来绕过保密障碍并绘制真实飞机翼型,因此由于不同设计师的初始假设,同一架飞机的翼型会有所不同。本文提出了一种摄影测量形状预测方法,用于利用真实飞机机身的可公开访问的静态和动态视觉内容来推导其几何特性。该方法基于提取气动表面和机身之间的整流罩区域的视觉上可区分的曲线。介绍了 B-29 和 B-737 的两个案例研究,展示了如何近似机翼内侧翼型的截面坐标,并证明了复制翼型的几何和气动特性与原始版本之间的良好一致性。因此,本文提供了一种系统的逆向工程方法,将增强飞机概念设计和飞行性能优化研究。
石器时代、青铜器时代和铁器时代是人类开始掌握这些自然界材料的历史时期。但是,如果我们只需按照需要排列原子,就能制造出具有特定特性的新材料,那会怎样呢?早在 1960 年,理查德·费曼就挑战我们“自下而上”思考,通过引导和操纵单个原子的排列来创造新材料 1。他邀请我们进入一个全新的物理学领域,在那里我们可以前所未有地控制新材料的性质和功能。虽然这在当时只是一个遥不可及的梦想,但现代实验合成技术的进步和纳米技术的革命已经让我们非常接近实现这个梦想。实现这一目标的一个有希望的方法是分层自组装,单个粒子自发组织成有序结构,也是自然界形成复杂生物功能结构的最重要策略。在这个过程中,材料的制备过程是先将原子组装成分子,再将分子组合成更大的单元,尺寸从几纳米到几微米不等,最后让这些悬浮在液体中的胶体结构块自组织成三维有序结构。这些自组装材料具有数十至数百纳米尺度的明确结构和极大的表面积体积比——这些特性使它们不仅非常适合光电、等离子体和光子应用,还非常适合催化和储能。这一策略的成功实施取决于合成和制造新型纳米颗粒和胶体颗粒的能力。尽管最近的进展已经产生了各种各样的新结构单元,这些单元的相互作用潜力可以从硬的到软的排斥的、吸引的、偶极的、形状各向异性的、不均匀的甚至自推进的,但尽管人们为开发新的合成路线付出了巨大的努力,但与化学家的分子“工具包”相媲美的无数可能的胶体结构单元中只有一小部分被制造出来。 提供更多关于胶体相互作用细节的评论包括参考文献 2 – 7 。 为了加速材料科学的进步,最好用理论预测来指导实验工作,以便
本文从“后创造力”这一概念出发,它是后人类中心创造力的缩写,它暗示了一种不仅仅关注创造力的人性方面的创造力概念或理解。首先需要声明的是,我们倡导这一概念并不是为了表明我们已经超越了创造力。它并不追求创造力。“后”前缀暗示了创造力研究和相关学科及实践中的以人为中心的倾向,包括计算创造力 (CC)。这一点变得很重要,因为我们正在进入一个人类因素越来越不处于事物中心的领域,也与创造力有关,而且这种情况已经持续了相当长一段时间。这种转变既与生产性创造性实践有关,目前有很多实践实验正在进行中。它也与我们的思维方式有关。我们对那些我们称之为“创造性”的实践的概念理解发生了一些变化。因此,“后创造力”既与制造物品的变化有关,也与制造物品的意义有关(我稍后会解释,