。CC-BY-ND 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 1 月 26 日发布。;https://doi.org/10.1101/2024.01.25.577267 doi:bioRxiv 预印本
外源 DNA 可以作为精确编辑细胞基因组的模板。然而,将体外产生的 DNA 输送到靶细胞可能效率低下,模板 DNA 的低丰度可能是精确编辑率低的原因。在细胞内产生模板 DNA 的一个潜在工具是逆转录子,这是一种参与噬菌体防御的细菌逆转录元件。然而,很少有人致力于优化逆转录子以产生设计序列。在这里,我们确定了逆转录子非编码 RNA 的修饰,这些修饰会产生更丰富的逆转录 DNA。通过测试能够实现高效逆转录的逆转录子操纵子架构,我们发现 DNA 产量的提高可以从原核细胞移植到真核细胞,从而实现更高效的基因组编辑。最后,我们表明逆转录子 RT-DNA 可用于精确编辑培养的人类细胞。这些实验为使用逆转录子产生 DNA 进行基因组修饰提供了一个通用框架。
逆转录子是多种多样的细菌抗噬菌体防御系统。逆转录子操纵子由逆转录酶、辅助蛋白和作为逆转录引物和模板的结构化非编码 RNA 组成。逆转录子目前正在开发成细菌、植物和哺乳动物细胞中的新基因编辑工具。Finkelstein 实验室发现的一种新逆转录子系统 Efe1 在哺乳动物细胞中的基因编辑率高于目前的逆转录子基因编辑标准 Eco1。发现 Efe1 优于 Eco1 的原因可以阐明逆转录子功能背后的分子机制。在这里,我研究了 Efe1 逆转录酶,并使用低温电子显微镜重建了其 RT-msDNA 复合物的 3.9 Å 密度图。Efe1 复合物与 Eco1 复合物非常相似,只是它是一种单体,并且其 msDNA 具有比 Eco1 更刚性的 DNA 茎环。在没有同源 ncRNA 的情况下,Efe1 逆转录酶溶解度急剧下降。 Efe1 逆转录酶也可被 Eco1 ncRNA 溶解并产生 Eco1 msDNA。Efe1 逆转录酶中催化残基的突变会消除 msDNA 的产生并降低溶解度。这些发现有助于了解逆转录酶与 ncRNA 的相互作用,从而决定正确的蛋白质折叠,并为未来单独纯化逆转录酶提供一些指导。
图 4 . (A) 对表达逆转录子 Eco2 (67 nt) 或 4LE-v1 至 v4 (126 nt) 的细胞中提取的 RT-DNA 进行变性 PAGE 分析。基因组编码的逆转录子 Eco1 (90 nt) 作为内部控制。标记物 M1 是 4LE- v4 的化学合成 DNA 版本。(B) 通过长度标准化荧光带强度分析确定逆转录子 Eco2 (67 nt) 和 4LE 变体相对应的 RT-DNA 相对于内源性 Eco1 的富集倍数。所示数据来自 n = 3 个技术重复。(C) 用 DFHBI-1T 进行大量体内荧光测量。配对 t 检验,诱导与未诱导:Eco2,p = 0.86;4LE-v1,p = 0.27;4LE-v2,p = 0.003;4LE-v3,p = 0.007; 4LE-v4,p = 0.005;n = 3 个生物学重复。(D)表达 4Lettuce 位置变体的 DFHBI-1T 染色细胞的流式细胞术分析。153
细胞因子释放综合征是嵌合抗原受体-T细胞疗法的严重并发症,并且是通过嵌合T细胞过度分泌炎性细胞因子而触发的,这可能是致命的。在调查了整理细胞因子释放综合征的分子机制之后,我们假设Deltarex-G是一种靶向肿瘤的逆转录子编码胞质CCNG1抑制剂基因的肿瘤,可能是皮质类固醇耐药的细胞因子释放综合征的可行治疗方法。Deltarex-G获得了美国食品和药物管理局紧急使用授权,以治疗COVID-19引起的急性呼吸窘迫综合征,这是由于过度活化的免疫细胞。短暂的deltarex-G给药会抑制一定比例的多动性嵌合T细胞,从而减少细胞因子释放,同时保持嵌合T细胞效率。
R2非长末端重复(非LTR)逆转录子是多细胞真核生物中分布最广泛的移动遗传元件之一,并且对在人类基因组的转基因补充中的应用显示出希望。他们以精致的特异性将新基因插入28S核糖体DNA中的保守位点。r2进化枝是由逆转录子编码的蛋白的N末端的锌指(ZF)数量定义的,该蛋白被认为是为添加赋予DNA位点特异性的。在这里,我们阐明了进化枝之间的R2 N末端结构域的DNA识别的一般原则,并具有广泛的,具体的识别,仅需要一个或两个紧凑型域。DNA结合和保护测定法证明了广泛共享以及进化枝特异性的DNA相互作用。基因插入测定识别足以用于目标位点插入的N末端结构域,并揭示了进化枝特异性ZFS中第二链裂解或合成中的作用。我们的结果对理解非LTR逆转录座插入机制的进化多样化以及基于逆转录座子的基因疗法的设计具有意义。
伪cospora ulei是南美叶枯萎病(SALB)的因果,这是影响hevea brasiliensis橡胶树的主要疾病,这是亚马逊的本地物种。橡胶树是南美国家的主要农作物,SALB疾病控制策略将受益于真菌病原体的基因组资源的可用性。在这里,我们组装并注释了P. ulei基因组。使用第二代和第三代测序技术进行shot弹枪测序。我们介绍了第一个P. ulei高质量的基因组组件,是Mycosphaerellaceae中最大的,具有93.8 MBP,包括215个脚手架,N50的2.8 MBP和BUSCO基因完整性为97.5%。我们在P. Ulei基因组中鉴定了12,745个蛋白质编码基因模型,其中756个基因编码了分泌的蛋白质和113个编码效应子候选物的基因。大多数基因组(80%)由吉普赛超家族的逆转录子主导的重复元素组成。ulei在Mycosphaerellaceae中具有最大的基因组大小,TE含量最高。总而言之,我们为对ULEI和相关物种的广泛研究建立了基本资源。
作用于RNA(ADARS)的摘要腺苷脱氨酶是将腺苷转化为双链RNA中的插入(RNA编辑A-TO-I)的酶。adar1和adar2先前被报道为HIV-1前病毒因素。这项研究的目的是研究HIV-1表达期间ADAR2核糖核蛋白蛋白复合物的组成。通过在表达HIV-1然后进行质谱分析的细胞中使用双标记亲和力纯化程序,我们确定了10个非核糖体ADAR2-相互作用因子。先前发现了与长的散布元素1(Line1或L1)核糖核颗粒相关的这些蛋白质的很大一部分,并调节L1逆转录子的生命周期。考虑到我们先前证明ADAR1是Line-1逆转录座子活性的抑制剂,我们研究了ADAR2是否也起着相似的功能。为了达到这个目标,我们在过表达或消融的ADAR2的细胞中进行了特定的细胞培养逆转录分析。这些实验揭示了ADAR2作为L1反转座的抑制剂的新功能。此外,我们表明ADAR2结合了基底L1 RNP复合物。
突变发现的抽象当前临床方法基于外显子和侧翼剪接位点的简短序列读取(100-300 bp)。短阅读测序对于检测单核苷酸变体,小插入和简单的拷贝数差异非常准确,但用于识别复杂插入和缺失以及其他结构重排的使用有限。我们使用CRISPR-CAS9从乳腺癌患者的淋巴细胞细胞中切除完整的BRCA1和BRCA2基因组区域,然后用长读数(> 10 000 bp)对这些区域进行测序,以完全表征所有非编码区域的结构变化。在受基因面板和外显子组测序中受到早发双侧乳腺癌的严重影响,并以阴性(正常)结果影响的家庭中,我们确定了一个内含子的正弦vntr-alu逆转录子插入插入,导致BRCA1消息中伪exon的构成并引入了置换。CRISPR – CAS9切除和长阅读测序的这种组合揭示了一类复杂,有害和其他隐性突变,这些突变可能在肿瘤抑制基因中特别频繁,并带有内含子重复序列。
摘要:转座元件的失调导致神经退行性疾病。先前的研究报告说,果蝇模型以及人的tauopathies中的逆转录子转录增加。在这种情况下,我们在P301S小鼠中测试了逆转录酶抑制剂,即拉米夫丁(也称为3TC),这是基于FTDP-17-TAU过表达的阿尔茨海默氏病动物模型。通过饮用水施用拉米夫丁的转基因P301S小鼠在以下典型的tauopath的组织病理学标记中显示出降低:tau磷酸化;炎症;神经元死亡;和海马萎缩。lamivudine治疗减弱了运动率(Rotarod测试)和改善的短期记忆(Y-Maze检验)。为了评估tau在逆转录中的作用,我们用含有完整的线-1序列和新霉素的盒式盒子和新霉素的盒式磁带,并与tau序列共转染HeLa细胞。line-1插入大大增加。此外,拉米夫丁抑制了线1的插入。我们的数据表明,在神经病理学的第一个症状下,通过兰米夫定给予tauopathy的进展。