Singel 3 | B-2550 Kontich |比利时|数数。+32(0)3 458 30 33 | info@alcom.be | www.alcom.be Rivium 1st Street 52 | 2909 Le Capelle Aan Den Ijssel |荷兰|数数。+31(0)10 288 25 00 | info@alcom.nl | www.alcom.nl
摘要 - 我们介绍了基于N掺杂SBSE和GE层的堆叠的卵子阈值开关(OTS)多层(ML)选择器设备的工程。通过调整单个层厚度和ML堆栈的N含量,我们证明了在集成后端(BEOL)(BEOL)期间可高度提高选择器稳定性的可能性,并降低设备对设备的变化。我们展示了OTS ML如何呈现基本的电气特性,这些特性与通过共同输入技术实现的标准散装OT兼容,但可以实现可靠的切换操作,最高可变可变异性的160°C。我们通过FTIR和拉曼光谱研究了层结构,即使在400°C下3小时后,在OTS/EDX分析中,在循环和退火的设备上进行了ots ml wrt buld ots的高稳定性,我们突出了OTS ML WRT量的无链结构的保留完整性。最后,由于对层结构和性能的更高控制,OTS ML解决方案允许可靠的耐力超过10个9周期,并提高了缩放设备的产量。
抽象的多机器人系统越来越多地部署,以提供服务并完成其复杂性或成本太高的任务,无法单独实现单个机器人。尽管多机器人系统通过冗余提供了可靠性,并使执行更具挑战性的任务,但工程这些系统非常复杂。这种复杂性不仅影响机器人团队的建筑建模,而且会影响协作情报的建模和分析,从而使团队能够完成其任务。进行多机器人应用程序开发的现有方法没有提供捕获这些方面并评估多机器人系统鲁棒性的系统机制。我们通过引入Atlas来解决这一差距,Atlas是一种新型的模型驱动方法,支持模拟中多机器人系统的系统设计空间探索和鲁棒性分析。特定于Atlas领域的语言使建模机器人团队的架构及其使命的建筑,并促进了团队智能的规范。我们在三个模拟案例研究中评估了地图集并证明了其有效性:基于医疗的海龟任务和两个使用凉亭/ROS和MOOS-IVP机器人平台开发的无人管理的水下车辆任务。
选择您要注射的特立帕肽剂量。为此,请按照图纸上所示的方向转动剂量选择器,直到剂量选择器窗口中出现与特立帕肽微克数相对应的所需数字。确保剂量选择器窗口显示正确的剂量数。如果拨出的剂量过高,您可以通过向后转动剂量选择器来纠正。
摘要在胃肠道中,神经rest细胞在神经板边界处指定为PAX7表达。使用单细胞RNA测序与高分辨率原位杂交结合以识别新型的转录调节剂,我们表明染色质重塑剂HMGA1在规格之前高度表达并保持在迁移的鸡神经trest细胞中。暂时控制的CRISPR-CAS9介导的敲除在神经Crest发育中发现了HMGA1的两个不同功能。在神经板边界,HMGA1调节依赖PAX7的神经rest谱系规范。在移民阶段,第二个角色表现出HMGA1损失减少了独立于PAX7的背神经管的颅顶移民。有趣的是,这是通过稳定的ß-catenin挽救的,因此将HMGA1作为规范WNT激活剂。一起,我们的结果表明,HMGA1在神经Crest发育过程中以双峰方式起作用,以调节神经板边界的规范,然后通过规范WNT信号传导从神经管中移民。
抽象的终端选择器是转录因子(TF),它们在发育过程中建立并在整个生命中保持有丝分裂神经元身份。我们先前表明,秀丽隐杆线虫胆碱能运动神经元(MNS)的末端选择器UNC-3/EBF间接起作用,以防止替代性神经元认同(Feng等,2020)。在这里,我们在全球范围内确定UNC-3的直接目标。出乎意料的是,我们发现MN中的UNC-3目标套件在不同的生命阶段进行了修改,从而揭示了终端选择器函数中的“时间模块”。在所有幼虫和成人阶段中,unc-3是连续表达各种蛋白质类所必需的(例如,受体,转运蛋白)对于Mn功能至关重要。然而,仅在幼虫和成年后期,需要UNC-3才能保持MN特异性TF的表达。通过基因组工程对UNC-3的时间模块的最小破坏会影响运动。 另一个秀丽隐杆线虫末端选择器(UNC-30/pitx)也表现出时间模块,支持该机制控制神经元认同的潜在通用性。通过基因组工程对UNC-3的时间模块的最小破坏会影响运动。另一个秀丽隐杆线虫末端选择器(UNC-30/pitx)也表现出时间模块,支持该机制控制神经元认同的潜在通用性。
由于简单的金属/绝缘子/金属(MIM)结构,快速速度,低功耗和高积分密度,因此已被认为是非易失性记忆的有前途的候选日期。1 - 3横梁阵列体系结构是一种非常有效且简单的手段,可实现高密度积分,较小的存储器大小为&4 f 2。4,5由于通过欧姆和基尔chhoQ的定律直接完成点产品,因此Memristor Crossbar阵列非常适合某些特定的C应用,例如,神经形态计算系统。6 - 11然而,最先进的备忘录的神经形态计算中的阵列大小很小,从而限制了回忆计算系统的实际应用。为了实现大规模阵列,稳定且均匀的电阻开关设备是基本要求。12此外,Sneak Path问题是由阵列中未指定的单元引起的泄漏电流造成的严重挑战,这会导致阵列大小的限制并读取/写入错误。要克服潜行路径问题,选择设备(选择器),例如二极管,13
由于简单的金属/绝缘子/金属(MIM)结构,快速速度,低功耗和高积分密度,因此已被认为是非易失性记忆的有前途的候选日期。1 - 3横梁阵列体系结构是一种非常有效且简单的手段,可实现高密度积分,较小的存储器大小为&4 f 2。4,5由于通过欧姆和基尔chhoQ的定律直接完成点产品,因此Memristor Crossbar阵列非常适合某些特定的C应用,例如,神经形态计算系统。6 - 11然而,最先进的备忘录的神经形态计算中的阵列大小很小,从而限制了回忆计算系统的实际应用。为了实现大规模阵列,稳定且均匀的电阻开关设备是基本要求。12此外,Sneak Path问题是由阵列中未指定的单元引起的泄漏电流造成的严重挑战,这会导致阵列大小的限制并读取/写入错误。要克服潜行路径问题,选择设备(选择器),例如二极管,13
1。确保将ERA-RXPG插入标准墙插座中。2。在ERA-RXPG接收器上,按住“模式”按钮(图3中的较低按钮),直到听到短音调和红色LED(前镜头盖内)开始闪烁。这表示该单元处于编程模式。发布此按钮。3。滚动通过按下旋律选择器按钮来浏览可用的旋律。听到想要各自的按钮播放的声音时,请停止按下此按钮。4。按下按钮按下中心按钮。接收器将播放快速的铃声,通知发射器已编程为接收器。红色LED仍应闪烁。5。如果要编程第二个发射器(按下按钮,门触点,运动传感器或车道传感器)按下旋律选择器按钮(顶部的按钮)以滚动浏览可用的旋律。拥有想要的声音后,请停止按下旋律选择器按钮,然后在上面重复步骤4,触发传感器/发射器。6。一旦您按下“模式”按钮对所有发射器进行编程后,直到听到短音调和红色LED消失(大约3秒)。