糖尿病是一个严重而广泛的健康问题,是早期死亡和严重持续性(慢性)疾病的主要原因。这是一种长期的代谢疾病,其特征是胰岛素不足引起的慢性胰岛素抵抗和高血糖。linagliptin是二肽基肽酶-4抑制剂(DPP-4抑制剂),通常被处方用于治疗II型糖尿病。但是,Linagliptin的渗透率较差,而水溶性却很少,这就是Linagliptin具有低生物利用度的原因,为29.5%。此外,需要保持稳定的血浆浓度,以有效地控制糖尿病患者血糖水平的长期控制。tdds通过完整的皮肤将药物输送到系统性循环中。这是皮下注射和口服药物输送系统的替代方法。本研究工作的主要目的是使用合适的聚合物和渗透增强剂制定Linagliptin透皮斑块,旨在通过渗透到皮肤表面来增加水溶性药物不良的生物利用度,并可以避免使用肝次要质量代谢。制作了透皮矩阵贴片并发现合适。利用盒子响应性Behnken的表面设计,提高了配方。根据实验的设计,对15种制剂进行了全面开发,并检查了折叠耐力和体外药物的释放。Linagliptin斑块的理想贴剂水平是通过使用折叠抗性和在体外药物释放的软件来确定的。与预期相一致,从15种制剂开始,在整个24小时的过程中,H5最有改进的斑块,该斑块释放了64.78%的药物。基于发现,这可以得出结论,由HPMC K100,Eudragit L100,PEG-400和Menthol制备的斑块可以有效地治疗糖尿病。
透皮药物输送是治疗剂给药的侵入性最少且对患者友好的方法之一。它不仅可以通过将药物分子浓缩在特定的皮肤区域来增强药物的生物利用度,而且还可以限制不可预见的不良影响的可能性。1 - 3因此,透射药物输送是口服药物的吸引人选择,也是皮下注射的替代选择。在1970年代,食品药品监督管理局(FDA)第一批授权透皮贴片以治疗疾病的骨pol骨治疗。4从那时起,已经开发出了透皮药物输送系统(TDD)的各种物理和化学策略,并取得了显着的进步。物理方法包括表皮侵蚀,使用探针的皮肤穿刺装置,高频振荡针线束,微针阵列和高速干燥的干粉喷气机,而
引言黑色素瘤的恶性疾病已经越来越多数十年,预计将继续增加。,男性的普遍性比女性高的1.5倍,并且依赖年龄的次数高,在40岁以下的女性中发生的频率比75岁以下的女性更频繁。1,2与许多固体癌症不同,黑色素瘤通常会影响年轻人和中年人(中位年龄= 57)。3尽管仅占皮肤肿瘤的4%,但黑色素瘤是最侵略性的癌症,占皮肤癌相关死亡率超过80%的癌症。4,5美国报告是男性和女性中第五和第六大最常见的癌症。是英国第12和11号。其发病率从1973年至2007年在美国的6.8人增加到20.1人。在2011年,分别在25.4和15.7分中看到了每10万人和女性。1,6,7
目标:评估新的右旋苯丙胺透皮系统(D-ATS)的效率和安全性,以治疗儿童和青少年(6-17岁),并使用注意力/多活跃障碍(ADHD)。方法:在此阶段2中,评估了4个不同剂量(5、10、15和20 mg)的4个D-ATS斑块。患者开始了为期5周的开放标签,逐步剂量优化期,他们接受了5毫克的D-ATS贴片(应用于髋关节)9小时。在每周访问期间,根据效率和安全性,对患者进行了对下一个剂量水平的调整。在最佳剂量下,该剂量是在2周的跨界双盲治疗期间维持的。主要终点是通过Swanson,Kotkin,Agler,M-Flynn和Pelham量表(Skamp)总分来评估D-ATS与安慰剂的效率;关键的次要终点包括评估按照总分来评估效能的发作和效率持续时间,其他次要终点包括永久性绩效量度(Permp)分数。整个过程都评估了安全性。结果:D-ATS的治疗在ADHD症状中与安慰剂相比,按照Skamp总分来衡量,在12次评估期内,总体最小二乘平均值差异(95%的置态间隔)与-5.87(6.76,-4.97; p <0.001)的安慰剂。在两小时后2小时观察到效率的发作(p <0.001),效果持续时间一直持续到12小时(在9小时以9小时为单位),在2小时内,D-ATS和安慰剂之间的差异显着差异(从2小时开始)(所有P£0.003)。临床试验注册号。在Permp-A和Permp-C分数中的显着改善和安慰剂的分数还从D-ATS处理后2到12小时观察到。d-ats是安全且耐受良好的,具有类似于口服苯丙胺观察到的系统性安全性。结论:这项研究表明,D-ATS是ADHD儿童和青少年的有效且耐受性良好的治疗方法。这些数据表明D-AT可以提供持续的效率以及透皮药物输送的优势,从而使其成为一种有益的新治疗选择。:NCT01711021。
微针以其无痛、无创、高效的药物输送方式引起了各医学领域越来越多的关注。然而,这些微针在不同表皮位置和环境中的实际应用仍然受到其低粘附性和较差的抗菌活性的限制。在这里,我们受到多粘芽孢杆菌的抗菌策略以及贻贝足丝和章鱼触手的粘附机制的启发,开发了具有多功能粘附和抗菌能力的分级微针。以聚多巴胺水凝胶为微针基底,每个微针周围环绕着一圈吸盘结构凹腔,所生成的微针可以很好地贴合皮肤;在干燥、潮湿和潮湿的环境中保持强粘附性;并在分成两部分后实现自我修复。此外,由于水凝胶尖端和聚多巴胺基质中都载有多粘菌素,微针在储存和使用过程中具有出色的抗常见细菌能力。我们已经证明这些微针不仅在应用于指关节时表现出优异的粘附性和理想的抗菌活性,而且在骨关节炎大鼠模型中药物缓释和治疗方面也表现出色。这些结果表明,仿生多功能微针将突破传统方法的限制,成为多功能透皮给药系统的理想候选者。
摘要 —本文讨论了生物医学应用的光学无线系统的基本架构。在总结主要应用并报告其要求之后,我们描述了透皮和体内光通道的特点以及它们对通信系统设计带来的挑战。更详细地说,我们为透皮通信提供了三种可能的架构,即目前正在研究的电光 (EO) 监测、光电 (OE) 和用于神经刺激的全光 (AO),而对于体内通信,我们提供了一个纳米级 AO (NAO) 概念。对于每种架构,我们讨论了它们的主要操作原理、技术推动因素和研究方向。最后,我们强调了设计一个信息理论框架的必要性,该框架用于分析和设计物理 (PHY) 层和介质访问控制 (MAC) 层,其中考虑到了信道的特性。
通过无针和非侵入性药物输送系统进行经皮免疫 (TCI) 是一种有前途的方法,可以克服传统肠外疫苗接种方法的当前局限性。皮肤可以靶向进入皮肤内的专业抗原呈递细胞 (APC) 群,例如朗格汉斯细胞 (LC)、各种真皮树突状细胞 (dDC)、巨噬细胞等,这使得皮肤成为理想的疫苗接种部位,可以根据需要专门塑造免疫反应。皮肤角质层 (SC) 是主要的渗透屏障,疫苗成分需要以协调的方式克服该屏障,以实现最佳进入真皮 APC 群,从而诱导 T 细胞或 B 细胞反应以产生保护性免疫。虽然有许多方法可以穿透 SC,例如电穿孔、超声或离子电渗疗法、屏障和消融方法、喷射和粉末注射器以及微针介导的运输,但我们将重点介绍基于粒子的 TCI 系统的最新进展。这种特殊方法通过扩散和沉积在毛囊中将疫苗抗原与佐剂一起递送至毛囊周围的 APC。本文讨论了不同的递送系统,包括纳米颗粒和脂质系统,例如固体纳米乳剂,以及它们对免疫细胞和记忆效应产生的影响。此外,本文还解决了 TCI 面临的挑战,包括及时和有针对性地将抗原和佐剂递送至皮肤内的 APC,以及更深入地了解导致有效记忆反应的不明确机制。
