一旦将实验室视为物理系统,将参考系从根本上视为量子系统在量子引力中是不可避免的,在量子基础中也是如此。因此,这两个领域都面临着如何描述相对于量子参考系的物理学以及相对于不同此类选择的描述如何关联的问题。在这里,我们利用两个领域思想的富有成效的相互作用,开始开发一种统一的量子参考系变换方法,最终旨在涵盖量子物理学和引力物理学。特别是,使用受引力启发的对称原理,它迫使物理可观测量具有关联性并导致描述中固有的冗余,我们开发了一个视角中性结构,它同时包含所有框架视角并通过它进行更改。我们表明,采用特定框架的视角相当于修复经典和量子理论中与对称性相关的冗余,而改变视角则对应于对称变换。我们使用约束系统的语言来实现这一点,这种语言自然地编码了对称性。在一个简单的一维模型中,我们恢复了 [ 1 ] 的一些量子框架变换,将它们嵌入到中立的框架中。利用它们,我们说明了所观察系统的纠缠和经典性如何依赖于量子框架视角。我们的操作
虽然已经证明了硅具有更高迁移率的材料,包括锗和各种 III-V 材料,但它们最多只在少数小众市场得到成功应用和商业化。硅技术取得巨大成功的原因是多方面的,例如硅的天然氧化物 (SiO 2 )、极其成熟和精细的加工能力,以及 n 型和 p 型金属氧化物半导体 (MOS) 晶体管的存在,这使得高效互补 MOS (CMOS) 逻辑成为可能。随着尺寸的进一步缩小,人们付出了巨大的努力来改进制造方法,以使硅场效应晶体管 (FET) 的性能稳步提高。目前,硅晶体管的技术节点处于 10 纳米以下范围。然而,在如此小的器件中,短沟道效应 (SCE)、增加的可变性和可靠性问题 [1],以及 3 纳米以下通道的通道载流子迁移率降低 [2] 都对硅技术的继续使用构成了严峻挑战。为了克服由硅制成的超薄器件的缺点,近十年来,对晶体管结构替代材料系统的研究不断加强。所谓的 2D 材料已被证明对后硅技术特别有利,并有可能为上述硅技术的局限性提供解决方案。[3,4]
摘要目的:这项研究旨在评估使用电视护理模型,评估管理免疫检查点抑制剂(ICI)和监测免疫相关的不良事件(IRAE)的安全性。设计:比较两个患者组的回顾性队列研究。设置:由Townsville(THHS)和Cairns Hospital Health Services(CHHS)运营的北昆士兰州电视网络(NQTN),汤斯维尔癌症中心(TCC)充当对照组设置。参与者:2015年1月至2019年4月之间通过NQTN接受ICI治疗的患者。在同一时间段内在TCC接受ICI的患者进行比较。主要结果指标:高级伊拉斯和与IRAE相关的死亡率。结果:52名患者通过NQTN通过Teleoncology模型收到了822个ICIS周期。在同一时期内,有142名患者在TCC处总共1521个周期。在
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
以越来越多的精度控制电子对于经典和量子电子既重要。自激光发明以来,驯化了连贯的光的每个属性,使其成为科学,技术和医学最精确的工具之一。连贯的控制涉及将光的精美定义特性转导向电子系统,从而将连贯性赋予其组成电子的属性。相干控制中的早期开发利用了高斯激光束和空间平均测量。激光的空间结构和轨道角动量为凝结物质系统中的电子和准粒子激发提供了额外的自由度。从这个角度来看,我们首先介绍了半核对器中相干控制的概念。然后,我们继续讨论结构化光束在相干控制中的应用以及对空间分辨出术检测的要求。随后,我们介绍了使用圆柱矢量束和具有结构相位前部的激光束进行的最新实验的概述。最后,我们提供了这些发展和未来感兴趣的方向的视野。
摘要。少数民族社区在美国首当其冲。非白人已经收缩了大多数SARS-COV-2感染;黑人美国人的共同死亡率是白人的两倍以上。鉴于此,研究这些人群中预防和治疗SARS-COV-2的最有效方法应该是研究的优先事项,尤其是在疫苗试验方面。美国国立卫生与食品药物管理局的联邦准则强调需要将少数群体纳入这些试验,但没有公开可用的SARS-COV-2疫苗试验方案需要代表的少数群体抽样。这篇文章强调了将少数民族社区充分纳入SARS-COV-2疫苗试验的重要性,以及该纳入SARS-COV-2疫苗分布的含义。
图 1.1.1:管道埋设、暴露和跨度之间的差异 10 图 1.3.1:默多克和 CMS 区域设施和管道 12 图 1.6.1:英国大陆架的 CMS 资产位置 22 图 1.6.2:CMS 区域布局 23 图 1.6.3:位置、相邻设施和环境敏感区域 26 图 1.6.4:位置和环境敏感区域 27 图 2.1.1:Boulton BM 设施的照片 30 图 2.1.2:Katy KT 设施的照片 30 图 2.1.3:Kelvin TM 设施的照片 31 图 2.1.4:Munro MH 设施的照片 31 图 2.2.1:Boulton HM 和 McAdam MM 海底设施的透视图 33 图 2.2.2: Hawksley EM 海底安装 33 图 2.2.3:Murdoch K.KM 和 Watt QM 海底安装透视图 34 图 2.3.1:Katy Tee 保护结构透视图 43 图 2.3.2:Kelvin/Murdoch 海底清管滑橇保护结构透视图 43 图 2.3.3:Kelvin PMA 保护结构透视图 44 图 2.3.4:Kelvin 海底三通组件保护结构透视图 44 图 2.3.5:McAdam Tee 保护结构透视图 45 图 2.3.6:PSNL 保护结构透视图 46 图 2.3.7:PSSL 保护结构透视图 46 图 2.5.1:估计安装库存饼图 58 图 2.5.2:估计管道库存饼图,不包括沉积岩石 58 图 3.1.1:向东看 Boulton BM 顶部的视图 59 图 3.1.2:向东看 Katy KT 顶部的视图 60 图 3.1.3:向东看 Kelvin TM 顶部的视图 61 图 3.1.4:向东看 Munro MH 顶部的视图 62 图 3.2.1:Boulton BM 导管架 3D 视图 64 图 3.2.2:Katy KT 导管架 3D 视图 65 图 3.2.3:Kelvin TM 导管架 3D 视图 66 图 3.2.4:Munro MH 导管架典型 3D 视图 67 图 3.4.1:安装床垫前的残余桩身 80 图 6.3.1:项目计划甘特图 98 图 A1.1.1:Murdoch 附近的管道示意图设施 101 图 A1.2.1:Boulton BM 附近的管道示意图 102 图 A1.3.1:Boulton HM 附近的管道示意图 103 图 A1.4.1:Hawksley EM 附近的管道示意图 104 图 A1.5.1:McAdam MM 附近的管道示意图 105 图 A1.6.1:Munro MH 附近的管道示意图 106 图 A1.7.1:Murdoch K.KM 附近的管道示意图 107 图 A1.8.1:Kelvin TM 附近的管道示意图 108 图 A1.9.1:Katy KT 附近的管道示意图 109 图 A1.10.1:Watt QM 附近的管道示意图 110 图 A2.1.1:Murdoch 外的管道交叉口示意图500m 区域 111 图 A2.2.1:Murdoch 500m 区域 112 内的管道穿越示意图 图 A3.1.1:Murdoch 500m 区域 113 外沉积岩石示意图 图 A3.2.1:Murdoch 500m 区域 114 内的沉积岩石示意图
物理学中最基本的概念之一是将系统分配到子系统中及其部分之间的相关性研究。在这封信中,我们在量子参考框架(QRF)协方差的上下文中探讨了这一概念,其中这种分区受对称约束的约束。我们证明,不同的参考框架观点会引起不同的子系统可观察的代数,这导致了子系统和纠缠的尺寸不变的框架依赖性概念。我们进一步证明,在对称约束施加对称性之前的下通勤的子代数可以在给定的QRF透视图中转化为对称性的代数。这样的QRF透视图不能继承子系统之间的区别,以相应的张量化性化为Hilbert空间和可观察的代数。由于发生这种情况的条件取决于QRF的选择,因此子系统局部性的概念取决于框架。
1系统生物学研究所,美国华盛顿州西雅图; 2美国华盛顿州华盛顿大学华盛顿大学生物工程系; 3瑞士日内瓦大学制药科学学院制药生物化学小组; 4瑞士西部的药学科学研究所(PSI-WS),日内瓦大学/瑞士日内瓦大学洛桑大学; 5公共卫生科学系,美国华盛顿州西雅图市弗雷德·哈钦森癌症研究中心; 6比利时Vilvoorde的Cargill研发中心欧洲中心; 7 Sensus BV(皇家Cosun),荷兰Roosendaal; 8代谢和营养研究小组,卢凡恩药物研究所,瓦隆生命科学与生物技术卓越(WELBIO),UCLOUVAIN,UCTORICETURIQUE DE LOUVAIN大学,布鲁塞尔,比利时; 9英国吉尔福德大学萨里大学食品,营养和运动科学系; 10医学和科学事务,Reckitt |米德·约翰逊(Mead Johnson)营养学院,荷兰尼加梅根(Nijmegen); 11荷兰瓦格宁根的瓦格宁根大学和研究的主持人Microbe Interactomics Group; 12健康与幸福小组,H&H研究,爱尔兰科克; 13 IFF Health&Biosciences,芬兰坎特维克; 14巴西圣保罗州立大学食品工程技术系; 15 Yakult Europe BV,Almere,荷兰; 16英国诺丁汉大学医学院的诺丁汉NIHR生物医学研究中心; 17英国雷丁大学的食品和营养科学,雷丁大学;荷兰瓦格宁根欧洲Yili Innovation Center 18; 19 Beneo-Institute/SüdzuckerGroup,Obrigheim/Pfalz,德国;和20个国际生命科学研究所,欧洲分支机构,布鲁塞尔,比利时
白粉病是草莓生产中最有问题的疾病之一。迄今为止,很少有商业草莓品种被认为具有完全耐药性,因此,必须实施广泛的喷雾计划来控制病原体。在这里,使用大规模的场实验来确定各种草莓基因型面板中叶片和水果组织的白粉病耐药性状态。该表型数据用于识别与组织粉状霉菌耐药性相关的定量性状核苷酸(QTN)。总共发现六个稳定的QTN与叶面耐药性相关,其中1个QTN在7D染色体上与耐药性增加61%有关。与叶子的结果相反,没有QTN与抗果疾病抗性有关,并且在草莓果实上观察到了高度的耐药性,在水果和叶面症状之间未观察到遗传相关性,表明组织特异性反应。除了遗传基因座的鉴定之外,我们还证明了基因组选择可以导致跨基因型的叶面耐药性快速增长,并有可能捕获人群中存在的遗传叶子抗性的50%。迄今为止,自然抵抗的定量性质和与性状的遗传控制有关的知识的定量性质阻碍了草莓中强大的白粉病耐药性的繁殖。这些结果通过为社区提供可用于基因组知情育种的大量信息来解决这一短缺,实施可能会提供一种自然的抵抗策略来打击白粉病。