• EBBM 透镜系统使 LED 能够为开放式地板和货架过道提供优化的照明,光度分布为 50 度和 120 度。 • 使用高亮度 LED,典型 5000K CCT 下 CRI 为 70 • LM-79 测试和报告根据 IESNA 标准执行。
LED 轨道聚光灯,带圆柱形灯头和可更换透镜。驱动器包含在带轨道适配器的外壳中的版本。通过 Occhio 3d 运动学可自由移动,两个旋转轴相互成 45° 角。可拆卸灯头用于维护,可更换 LED 芯片。
传统太阳能发电厂使用曲面镜将阳光聚集到接收器上以产生太阳能。Heliac 开发了平面透镜,使用微结构和纳米结构箔来放大热量,生产成本低得多。这些透镜可以产生超过 350 摄氏度的温度,使其适用于各种工业过程。与生物质或天然气不同,太阳能热不会燃烧或排放二氧化碳,生产成本低得足以使该技术与化石燃料相媲美。这项技术的潜在二氧化碳节约量巨大:如果用于中国纸浆和造纸行业,该行业每年生产 1.25 亿吨纸浆和造纸,其工艺需要 80 至 200 摄氏度的热量,太阳能电池板每年可节省 7500 万吨二氧化碳。Heliac 已经在丹麦为 E.ON 建造了一个全尺寸太阳能场装置,每年可产生超过 1,500 兆瓦时的区域供热,效率比传统太阳能电池板高 25%。
由于具有不一致的信号模式,我们可以将动态散射视为聚焦入射电子的单个原子的叠加。在这里,我们扩展了所谓的原子透镜模型[3](以前为ADF开发)到光谱法。对于混合色谱柱,随着计算成本而迅速超过了多层计算的能力,订购的可能性呈指数增长。相比之下,原子镜头模型允许快速生成EDX散射截面,并在通道条件下考虑元素的排序。如图2对于核心壳Au-pt纳米棒,从多层计算中提取的散射横截面与原子透镜模型预测相当一致,但与假定信号与每种类型的原子数线性缩放的线性模型的偏差大不相同。要将原子镜头模型部署到实验结果中,我们可以合并实验测量的EDX部分横截面[4],这被称为部分,因为它在归一化过程中包括所有显微镜依赖性因子,从而绕过了EDX检测器的困难表征。此方法使我们能够探索具有多个元素的异质材料的巨大顺序可能性。
LhARA 将集成尖端技术,包括:• 激光驱动质子和离子源:该组件产生短而强的脉冲,用于“FLASH”辐射和紧密聚焦的微型光束。与传统方法不同,LhARA 无需准直即可实现这一目标。• 电子等离子体(Gabor)透镜:激光驱动离子源产生高度发散的光束,具有很大的能量散度,每个脉冲的能量散度可变化高达 25%。Gabor 透镜是传统螺线管的经济高效的替代品,并具有强大的聚焦能力。• 使用固定场交变(FFA)梯度加速器进行后加速:将使用固定场交变梯度加速器进行快速加速,从而可以灵活调整离子束的时间、能量和空间结构。与英国主要离子源激光器和加速器研究所团体的合作确保了强劲的发展。• 患者定位的智能自动化。• 包括离子声成像在内的新型仪器和诊断技术。
• 信道和源编码、模拟和数字(FM / AM / DVB / DAB / DRM)广播 • 高速信号处理 • 遥感、雷达技术:主动、被动、成像、侦察和二次雷达 • 天线、天线系统、波传播、EMC • 材料参数测量、材料无损检测、具有特殊性能的超材料设计(超级透镜、电磁隐蔽和屏蔽)
缩小 SiPh 封装与晶圆级 HVM 之间的差距 万亿级 PhotonicPlug 和 PhotonicBump:由 NIL 完成 在 SiPh 晶圆上对透镜或镜子等复杂光学微结构进行纳米压印 重要 图案保真度和可重复性 可扩展性 最高对准精度 残留层控制 薄而均匀 光纤沟槽与镜子完美对准
该 MPTEM 涉及实现一种新颖的电子光学元件——门控镜,用于将电子输入和输出耦合到多通成像系统。通过快速降低电位(“打开”状态),门控镜将作为透镜工作,并且电子可以输入到 MPTEM。然后可以提高电位(“关闭”状态),门控镜现在作为反射元件工作。可以再次降低电位,将电子输出耦合。我们的设计是一个机械对称的五电极透镜,具有两个外电极、两个内电极和一个中心电极。参见图 1 中的机械加工原型。每个电极将保持在独立于其他电极的静态直流电压下,并在中心电极上施加门控脉冲。中心电极和内电极(每侧)之间的电容约为 5 pF,内电极和外电极之间的电容约为 10 pF。同心真空室将每个电极大约 2 pF 的电容引入地。该门控镜对电压有严格的要求:理想情况下,门控镜将由完美的箱车脉冲串驱动,并始终处于完全打开(透镜)状态或完全关闭(镜子)状态。当然,这需要完美的电响应和无限的驱动电子设备带宽。实际上,需要容忍有限的上升时间和有限的脉冲平坦度。上升和下降时间要求由往返时间≳10 ns 给出。我们的初步目标是实现≤3 ns的上升和下降时间。平坦度要求来自色差考虑。我们的目标是将门控镜对色差的贡献保持在与电子源中的能量扩散引入的色差大致相同的数量级 [8]。因此,目标是在最终的 100 V 驱动电压下实现优于 1 V 的脉冲平坦度,或在我们的台式测试中实现峰峰值电压的 1%。请注意,此平坦度目标不仅适用于用于电子传输的脉冲顶部,还适用于尾部