LeoFresnel提供15°至60°的束角,无需颜色纹理,无线和有线DMX控制,并且输出与传统的1000 W Tungsten Light相当,用于电影,工作室和事件。带有内置电池可在250 W处提供2小时的最大亮度操作,可以使用RuntimeExtender进行扩展。附件包括用于连接轭架的菲涅尔透镜,barndoor和航空公司轨道,可轻松安装的兔子折扣适配器以及其他Astera配件,例如TrackHandle,Trackpin和Standard TevMP适配器。
使用两种不同的快速制造方法 - 电子束添加剂制造(EBAM)和激光净成型(镜头) - 用于制造NITI元素。以电线或球形粉末形式的初始材料的微观结构和马氏体转化温度。使用镜头技术制造的样品在2 26 C(以DSC中的最大Martensite峰值为最大值表示)时显示了马氏体转化温度(MTT),与原粉相比较低。在使用EBAM制造的样品的情况下,MMT达到2 19 C. Martensite和反向转化的峰弥漫,这是由于样品中晶粒尺寸和组成的差异。在500°C下的衰老2小时不仅在两个样品冷却过程中不仅导致R相分离,还导致了更敏锐和更高转化峰的形成,以及MTT向更高温度的转移。微观结构研究显示,柱状晶粒,靠近沉积元件和底板的界面,垂直于板表面生长。谷物沿着生长方向显示轴向纤维纹理。茎显微照片揭示了富含Ti中的细长细胞的存在。在此过程中形成富含Ti的颗粒导致基质中Ti的耗竭,并与初始NITI粉末相比有助于MTT的增加。透镜沉积样品在奥氏体中还包含较高的位错密度。压缩应力/应变样品样品的应变曲线仅显示马氏体的变形,而透镜沉积的变形在压缩模式下显示出几乎完全的超弹性效应,最高3%。
• 目视着陆辅助设备 (VLA) 实验室 – 通过维护当前部署的 VLA 系统的最新服务变更配置,为机队 VLA 系统提供支持。该实验室还用于开发、制造和排除系统故障。当前的 VLA 系统包括:改进型菲涅尔透镜光学着陆系统 (IFLOLS)、手动操作目视着陆系统 (MOVLAS)、远程对线系统 (LRLS)、标记和照明设备、着陆信号官显示系统 (LSODS)、综合发射和恢复电视监视 (ILARTS) 系统、地平线参考集 (HRS)、垂直短距起降 (VSTOL) 系统、直升机操作和监视系统 (HOSS) 以及各种其他电子系统。
美国国家标准 IAPMO/ANSI USHGC 1 – 2021 “新兴技术——例如微电网和纳米电网,以及由太阳能光伏和电池储能系统 (BESS) 组成的先进控制系统——将成为使我们的地球更加可持续并减少对化石燃料依赖的路线图。在未来十年,我们预计科学家将学会捕获太阳能并通过特殊透镜将其传输到地球,从而无需发电厂发电,这将是可再生能源的又一次革命。这份 IAPMO 出版物对于与行业和所有利益相关者沟通至关重要,以实现我们的可再生能源目标以及满足行业、净零能耗 (NZE) 目标以及最终用户需求的更便宜的能源。”
摘要 本培训手册为海军和海军预备役人员准备,介绍了光学商店使用的理论和实践技能。结合镜子、棱镜、透镜和基本光学系统分析光学理论。系统。遵循机械设计和构造的基础知识,研究维护程序,以提供一般的知识。光学维修。 特别的。描述了诸如望远镜、望远镜、磁罗盘、方位角和水平仪、六分仪、测距仪、望远镜、双筒望远镜、潜艇潜望镜和夜视瞄准器之类的仪器。为了给读者提供足够的背景知识,还讨论了车床、磨床、铣床和钻床的操作。除了用于解释目的的插图外,还提供了有关光学Mara评级结构的信息。(CC)
摘要 本培训手册为海军和海军预备役人员准备,介绍了光学商店使用的理论和实践技能。结合镜子、棱镜、透镜和基本光学系统分析光学理论。系统。遵循机械设计和构造的基础知识,研究维护程序,以提供一般的知识。光学维修。 特别的。描述了诸如望远镜、望远镜、磁罗盘、方位角和水平仪、六分仪、测距仪、望远镜、双筒望远镜、潜艇潜望镜和夜视瞄准器之类的仪器。为了给读者提供足够的背景知识,还讨论了车床、磨床、铣床和钻床的操作。除了用于解释目的的插图外,还提供了有关光学Mara评级结构的信息。(CC)
摘要:隐形眼镜(CL)已成为一种非常流行的视力矫正手段,为全球数百万人提供了舒适感。然而,镜头上生物膜形成的持续问题引起了重大问题,导致各种眼部并发症和不适。这篇评论的目的是制定更安全,更有效的策略,以防止和管理CL上的微生物生物膜,从而改善眼睛健康和佩戴者的舒适性。考虑到这些考虑,本研究通过探索微生物粘附,细胞外聚合物物质的产生和透镜材料本身的特性来研究生物膜形成的复杂机制。此外,它强调了所涉及的微生物,包括细菌,真菌和其他机会性病原体,阐明了它们在透镜和其他与医疗器械相关的感染和炎症反应中的影响。超越了生物膜对CL的挑战,这项工作探讨了生物膜检测技术的进步及其临床相关性。它讨论了诊断工具,例如共聚焦显微镜,遗传测定和新兴技术,评估了它们识别和量化与生物膜相关感染的能力。最后,本文研究了当代策略和创新方法,用于管理和防止CL上的生物膜开发。总而言之,这篇综述为眼保健从业者,镜头制造商和微生物学研究人员提供了见解。关键词:假单胞菌,葡萄球菌,显微镜,遗传,微生物角膜炎它突出了生物膜与CL之间的复杂相互作用,为开发有效的预防措施和创新解决方案的基础,以增强CL安全性,舒适性和整体眼部健康。对CL上微生物生物膜的研究正在不断发展,就CL佩戴者而言,探索了几个未来的方向,以应对挑战并改善眼睛健康结果。
摘要:增强现实(AR)显示将虚拟图像叠加在周围场景上,在视觉上融合了物理世界和数字世界,为人机交互开辟了新视野。AR显示被认为是下一代显示技术之一,引起了学术界和工业界的极大关注。当前的AR显示系统基于各种折射、反射和衍射光学元件的组合,例如透镜、棱镜、镜子和光栅。受底层物理机制的限制,这些传统元件仅提供有限的光场调制能力,并且存在体积大、色散大等问题,导致组成的AR显示系统尺寸大、色差严重、视场窄。近年来,一种新型光学元件——超表面的出现,它是亚波长电磁结构的平面阵列,具有超紧凑的占地面积和灵活的光场调制能力,被广泛认为是克服当前AR显示器所面临的局限性的有效工具。本文旨在全面回顾超表面增强现实显示技术的最新发展。我们首先让读者熟悉增强现实显示的基本原理,包括其基本工作原理、现有的基于传统光学的解决方案以及相关的优缺点。然后,我们介绍光学超表面的概念,强调典型的操作机制和代表性的相位调制方法。我们详细介绍了三种超表面设备,即超透镜、超耦合器和超全息图,它们为不同形式的增强现实显示提供了支持。详细解释了它们的物理原理、设备设计和相关增强现实显示的性能改进。最后,我们讨论了超表面光学在增强现实显示应用中面临的现有挑战,并对未来的研究工作提出了展望。
一直遵循摩尔定律,根据该定律,通过光刻生产的集成电路的集成度会翻倍。到目前为止,这些微芯片主要采用波长为 193 nm 的光学光刻技术制造。为了实现 10 纳米以下的结构尺寸,必须使用极紫外光 (EUV):这可以实现更好的光学分辨率。然而,EUV 光刻面临着许多挑战。EUV 光被强烈吸收,因此必须在真空中进行曝光,并且在照明和成像系统中,必须将带透镜的折射光学器件替换为带镜子的反射光学器件。对要开发的光学器件的要求很高:它们需要高水平的研究和开发,以显著改善表面质量、材料成分、尺寸和形状。