吹扫气体的选择也是此解决方案的重要组成部分。根据与领先的曝光工具 OEM 合作保护扫描仪光学元件的经验,Entegris 已测试并确定了一种行之有效的吹扫气体源,以最大限度地降低和消除光刻工艺的风险。吹扫气体系统已获批准,可与这些相同曝光工具中的透镜组件一起使用。此外,高光学纯度对光罩的数值孔径没有影响。这种吹扫气体源对操作员也更安全,并提供最低的运营成本。Clarilite 系统使用的气体是 Entegris 的极度洁净干燥空气 (XCDA ® )。
国土安全部(DHS)科学技术局(S&T)国家生物融合分析和对策中心(NBACC)是DHS创建的第一个国家实验室。成立于2004年,该实验室与联邦调查局(FBI)合作运作,位于马里兰州迪特里克堡的国家机构间biodefense校园。NBACC提供了一种一种善良的生物自然维护实验室能力来应对生物学威胁。NBACC的组成部分包括国家生物透镜分析中心(NBFAC)和国家生物威胁特征中心(NBTCC)。NBACC的运营模型在S&T实验室中是独一无二的,是由Battelle National Biodefense Institute(BNBI)运营的联邦资助的研发中心。
背景:氧化应激是一种条件,使生产和消除活性氧(ROS)之间的平衡受到干扰。ROS会对包括DNA在内的各种生物分子造成损害。DNA损伤会损害细胞的功能和存活,并可能有助于白内障的发展。几项实验研究表明,氧化应激通过诱导透镜细胞中的DNA损伤参与白内障的形成。ROS是通过葡萄糖自氧化以及非酶蛋白糖基化在糖尿病组织中产生的。ROS被认为在糖尿病个体的微血管问题的发展中起着重要作用。目标:衡量糖尿病和非糖尿病性白内障患者的总抗氧化能力和丙二醛(MDA)的水平及其之间的比较。
光与单个粒子相互作用会产生特定的散射图案。与基于单个光电二极管检测的传统光学 PM 传感器不同,我们测量附近图像传感器上散射特征的无透镜投影(投影距离为 1.5 毫米)。这使我们能够计数粒子并确定其大小和折射率。这些参数是通过图像处理并与计算 Lorenz-Mie 散射图案投影的辐射测量模型进行比较来检索的。我们描述了传感技术、该传感器的架构和制造以及特性结果,这些结果与我们基于理论的预测非常吻合。特别是,我们表明可以区分不同尺寸的校准颗粒(单分散聚苯乙烯乳胶球)。该传感器足够灵敏,可以检测到单个粒子,并且最小尺寸小于 1µm。
The radiant intensity pattern (indicatrix) of a point source ......... 205 The radiant intensity pattern (indicatrix) of an e xtended source .... 205 The traditional method ................................................................. 207 The cup radiometer ................................................................ 207 The teleradiometer ................................................................. 207 The telecentric方法.......................................................................投影仪冷凝器透镜的等效折射表面..... 210 I.6.5。Method of an energy calculation of the viewfinder of a reflex camera having a focusing screen ................................. 216 Speed and focusing accuracy of an objective .............................. 217 Speed and focusing accuracy of a viewfinder .............................. 218 The optimal indicatrix of the focusing screen .............................. 221 Relationship between PSF of a collector lens and the indicatrix of a focusing screen ......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ....................................................................................................... 231 Optics of Monochromatic Waves 1D (one-dimensional) modeling ........................................................ 231 Standing wave .............................................................................. 232 2D (two-dimensional) modeling ........................................................ 234
Marcellin Atemkeng 博士 罗德斯大学 m.atemkeng@ru.ac.za 射电干涉技术、射电天文学机器学习、大数据和学习算法 Lucia Marchetti 博士 开普敦大学 lucia.marchetti@uct.ac.za 多波长星系/AGN 形成和演化、强引力透镜、大数据可视化技术 Mario Santos 教授 西开普大学 mgrsantos@uwc.ac.za 使用射电望远镜进行宇宙学研究,使用 MeerKAT 和 SKA 进行 21 厘米强度测绘。再电离和 HERA 望远镜 Roger Deane 教授 威特沃特斯兰德大学 roger.deane@wits.ac.za 使用 MeerKAT(+) 进行强透镜研究;使用 VLBI 巡天进行星系演化;双星 SMBH
描述了一种通过串联使用空间光调制器和涡旋延迟器来产生携带轨道角动量叠加态的光学矢量涡旋光束的方法。涡旋分量具有可携带轨道角动量的空间非均匀相位前沿,矢量特性是激光光束轮廓中的空间非均匀偏振态。通过使用倾斜透镜在像散系统中对光束在焦平面上的点进行成像,对矢量涡旋光束进行实验表征。对 Gouy 相位的数学分析与实验图像中获得的相位结构具有良好的一致性。结果表明,矢量光束的偏振结构和涡旋光束的轨道角动量得以保留。© 2017 美国光学学会
新型太赫兹探测器的开发仍然是一个有趣且令人兴奋的话题。这一进展是由新的应用需求以及基础科学的新发现推动的。太赫兹辐射的独特性质使其可用于各个领域。天文学、安全和医学是传统的应用领域。然而,无损检测和宽带电信也正在深入研究。太赫兹探测器特刊将重点介绍微电子、高频电子、纳米器件、材料科学、红外分支、光学、辐射测量、热现象等许多领域的透镜知识和成就。这意味着各种各样的检测机制。本期特刊将解决太赫兹探测器的当前挑战。欢迎撰写描述设计、建模、制造或实验验证的论文。也欢迎撰写太赫兹探测器应用的描述。
在过去的二十年里,超表面(一种通过空间排列的纳米级特征或“超原子”来操纵光的工程表面)已成为一种强大的概念,可用于定制和控制光的基本特性。透镜、移相器、偏振器和滤光片等传统光学元件体积庞大,需要数个波长的长度尺度才能改变穿过它们的光流。相比之下,光学超表面可以用一层深亚波长尺寸的光学纳米天线来操纵相位、振幅和偏振。用这种超薄扁平结构取代传统笨重光学元件的前景使超表面成为未来光学元件小型化设计工具包的重要组成部分,并实现全新的功能。
