4。函数和数组(7个讲座)功能的效用,按值调用,逐次调用,函数返回值,void函数,内联函数,返回数据类型,函数参数,函数参数,声明和函数的声明和定义之间的区分,司令部线路参数/参数在函数中,功能,功能,功能与可变量的参数数字。Creating and Using One Dimensional Arrays (Declaring and Defining an Array, Initializing an Array, Accessing individual elements in an Array, Manipulating array elements using loops), Use Various types of arrays (integer, float and character arrays / Strings) Two-dimensional Arrays (Declaring, Defining and Initializing Two Dimensional Array, Working with Rows and Columns), Introduction to Multi-dimensional arrays, return语句,返回值及其类型,带有数组的字符串处理,字符串处理功能,递归
1. 代数 (i) 方程理论和根的对称函数。(ii) 二项式、对数和指数级数、一般指数和对数级数(修订版)。(iii) 复数及其在工程问题中的应用。(iv) 矢量及其图形表示矢量的数学运算。(v) 矩阵和行列式(基本概念)。 2. 三角学 (i) 反圆函数。(ii) 德莫维尔定理及其应用。 3. 微分学:(i) 求函数微分系数导数的方法。(ii) 函数的微分。(iii) 对数微分。(iv) 逐次微分。(v) 偏微分。(vi) 切线和法线的应用。(vii) 最大值和最小值 4. 积分学 (i) 不定积分的方法。 (ii) 代换积分。 (iii) 分部积分。 (iv) 积分在圆柱体、圆锥体和球体的表面积、面积和体积计算中的应用。
压印光刻是一种有效且众所周知的复制纳米级特征的技术。纳米压印光刻 (NIL) 制造设备采用一种图案化技术,该技术涉及通过喷射技术将低粘度抗蚀剂逐场/逐场/逐次沉积和曝光到基板上。将图案化的掩模放入流体中,然后通过毛细作用,流体快速流入掩模中的浮雕图案。在此填充步骤之后,抗蚀剂在紫外线照射下交联,然后去除掩模,在基板上留下图案化的抗蚀剂。与光刻设备产生的图案相比,该技术可以忠实地再现具有更高分辨率和更大均匀度的图案。此外,由于该技术不需要大直径透镜阵列和先进光刻设备所需的昂贵光源,因此 NIL 设备实现了更简单、更紧凑的设计,允许将多个单元聚集在一起以提高生产率。
目前的理论认为,错误驱动的学习过程会通过一次次的试验进行更新,以促进运动适应。这一过程如何与运动皮层准备活动相互作用(目前的模型表明运动皮层准备活动在运动启动中起着关键作用)仍不得而知。在这里,我们评估了运动准备在视觉运动适应过程中的作用。我们发现准备时间与当前试验的错误方差和后续试验的平均错误呈负相关。我们还发现了因果证据,表明运动准备期间的皮层内微刺激足以扰乱学习。令人惊讶的是,刺激并没有影响当前试验,而是扰乱了学习过程的更新计算,从而影响后续试验。这与贝叶斯估计框架一致,在该框架中,运动系统在面对不确定性时通过降低错误敏感性来降低其学习率。运动准备和错误驱动的学习系统之间的这种相互作用可能有助于对逐次试验适应背后的机制进行新的探索。
I 学期 (AME 通用) 1.1 数学-I L T P 4 2 - 原理:数学是工程教育的支柱。它对于定量理解工程和技术概念是必不可少的。按主题划分的时间段分布 __________________________________________________________________ Sl.No.主题 覆盖时间 ______________________________________________________L___T___P___ 1.代数 15 8 - 2.三角学 15 8 - 3.微积分 26 10 - _________________________________________________________________ 总计 56 28 - _________________________________________________________________ 详细内容 1.代数: (i) 方程理论和根的对称函数。(ii) 二项式、对数和指数级数、一般指数和对数级数(修订版)。(iii) 复数及其在工程问题中的应用。(iv) 矢量及其图形表示 矢量的数学运算。(v) 矩阵和行列式(基本概念)。2.三角学:(i)逆圆函数。(ii) 德莫维尔定理及其应用。3.微分学:(i)求函数微分系数导数的方法。(ii) 函数的微分。(iii) 对数微分。(iv) 逐次微分。(v) 偏微分。(vi) 切线和法线结果的应用。(vii) 最大值和最小值
燃气发电厂和燃气电驱动压缩机驱动的电力和燃气系统之间的相互依赖性不断增强,因此有必要对这种相互依赖性进行详细研究,特别是在可再生能源份额增加的背景下。本文评估了综合方法在燃气和电力系统运行中的价值。采用外近似等式松弛 (OA/ER) 法处理燃气和电力系统综合运行的混合整数非线性问题的优化类。与逐次线性规划相比,该方法显著提高了求解算法的效率,计算时间缩短了近 40%。在 GB 2030 能源情景中,针对不同可再生能源发电渗透水平,量化了包括灵活燃气压缩机、需求侧响应、电池存储和电转气在内的灵活性技术在燃气和电力综合系统运行中的价值。建模表明,灵活性选项将显著节省天然气和电力系统的年度运营成本(最高可达 21%)。另一方面,分析表明,灵活性技术的部署可以适当地支持天然气和电力系统之间的相互作用。
摘要 — 本文在重离子辐照下测试了商用可编程片上系统(PSoC 5,来自赛普拉斯半导体公司),重点测试了系统的模数接口模块。为此,将数据采集系统 (DAS) 编程到被测设备中,并使用设计多样性冗余技术进行保护。该技术通过使用两种不同架构的转换器(一个转换器和两个逐次逼近寄存器 (SAR) 转换器)以不同的采样率运行,实现了不同级别的多样性(架构和时间)。实验在真空室中进行,使用能量为 36 MeV 且足以穿透硅的 16 O 离子束在活性区域产生 5.5 MeV/mg/cm 2 的有效线性能量传输 (LET)。平均通量约为 350 粒子/秒/cm 2,持续 246 分钟。评估了每个转换器对单粒子效应的个体敏感性,以及整个系统截面。结果表明,所提出的技术可有效缓解源自转换器的错误,因为使用分集冗余技术可纠正 100% 的此类错误。结果还表明,系统的处理单元容易挂起,可以使用看门狗技术来缓解。
现代仪器系统和数据采集系统需要低到中等分辨率、中速的模数转换器 (ADC)。由于这些系统大多是便携式的,因此 ADC 规范对功率和面积参数有严格的要求。尽管传统的逐次逼近寄存器 (SAR) ADC 因结构简单、模拟模块少而在这些应用中很受欢迎,但它们占用的芯片面积很大。传统 SAR ADC 采用二进制加权电容电荷再分配数模转换器 (DAC) [1,2]。传统电容电荷再分配 DAC 的两个主要限制是转换速度和庞大的电容阵列。较大的 MSB 电容限制了转换速度。这种架构中使用的 DAC 电容阵列变得非常笨重。文献中提出了一些新方法来提高 SAR ADC 的速度 [3,4]。此外,还提出了一些用于 SAR ADC 的面积效率高的 DAC 架构 [5-7]。其中一些 ADC 在性能系数 (FOM) 方面优于其他 ADC,但由于所用 DAC 架构的类型,面积效率 (AE) 参数会降低。[8、9] 中的 SAR ADC 将分辨率可变性融入传统电荷再分配 ADC,以适应需要不同分辨率的多种信号,适用于生物医学信号采集系统等应用。
公共引线电阻的误差会产生直流偏移电压。即使是积分 A/D 转换器的自动归零电路也无法消除此误差。但除此之外,此电流还会有几个变化的分量。时钟振荡器及其驱动的各种数字电路将显示时钟频率下的电源电流变化,通常也会显示亚倍数变化。对于逐次逼近转换器,这些变化将导致额外的有效偏移。对于积分转换器,至少高频分量应该平均。在某些转换器中,模拟电源电流也会随时钟(或亚倍数)频率而变化。如果显示器是多路复用的,则该电流将随多路复用频率而变化,通常是时钟频率的一小部分。对于积分转换器,数字和模拟部分电流都会随着转换器从一个转换阶段转到另一个转换阶段而变化。(注入自动归零环路的这种电流特别顽固。)另一个严重的变化源是数字和显示部分电流随结果值的变化。这通常表现为结果震荡和/或结果缺失;显示的一个值将有效输入替换为新值,该新值被转换并显示,导致不同的位移、新值等等。此序列通常在按顺序显示两个或三个值后关闭。
公共引线电阻的误差会产生直流偏移电压。即使是积分 A/D 转换器的自动归零电路也无法消除此误差。但除此之外,此电流还会有几个变化的分量。时钟振荡器及其驱动的各种数字电路将显示时钟频率下的电源电流变化,通常也会显示亚倍数变化。对于逐次逼近转换器,这些变化将导致额外的有效偏移。对于积分转换器,至少高频分量应该平均。在某些转换器中,模拟电源电流也会随时钟(或亚倍数)频率而变化。如果显示器是多路复用的,则该电流将随多路复用频率而变化,通常是时钟频率的一小部分。对于积分转换器,数字和模拟部分电流都会随着转换器从一个转换阶段转到另一个转换阶段而变化。(注入自动归零环路的这种电流特别顽固。)另一个严重的变化源是数字和显示部分电流随结果值的变化。这通常表现为结果震荡和/或结果缺失;显示的一个值将有效输入替换为新值,该新值被转换并显示,导致不同的位移、新值等等。此序列通常在按顺序显示两个或三个值后关闭。