部分子分布和碎裂函数是分析大多数高能数据的核心 [1,2]。在光前沿,由于时间膨胀和渐近自由,强子由冻结的部分子组成 [3 – 5]。因此,量子色动力学 (QCD) 中的硬过程可以分解为可微扰计算的硬块乘以非微扰矩阵元素,例如部分子分布函数 (PDF) 和碎裂函数 (FF)。PDF 在光前沿被估值,并且本质上是非微扰的,这使得它们无法用标准欧几里得格子公式来计算,除了几个最低矩之外。这个缺点可以通过使用准分布 [6] 及其变体 [7,8] 来避免。这些提议现在已被许多 QCD 格子合作所采用 [9 – 14]。我们最近展示了如何将这些概念扩展到量子计算 [15] 。夸克碎裂的概念起源于菲尔德和费曼的原创工作,他们提出了夸克喷流模型来描述半包容过程中介子的产生 [16] 。该模型本质上是一个独立的部分子级联模型,其中硬部分子通过发射连续的
自然界中发现的大部分复杂性和多样性都是由非线性现象驱动的,这对于非线性动力学与大脑之间的关系也是如此。计算机模拟表明,包括大脑在内的许多生物系统都表现出近乎混乱的行为。非线性动力学理论已成功地从生物物理学的角度解释了大脑功能,统计物理学领域在理解大脑连接和功能方面继续取得实质性进展。本研究使用生物物理非线性动力学方法深入研究复杂的大脑功能连接。我们的目标是发现高维和非线性神经信号中隐藏的信息,希望提供一种有用的工具来分析功能复杂网络中的信息转换。通过利用相图和模糊递归图,我们研究了复杂大脑网络功能连接中的潜在信息。我们的数值实验包括合成线性动力学神经时间序列、物理上真实的非线性动力学模型和生物物理上真实的神经质量模型,结果表明,相图和模糊递归图对神经动力学的变化高度敏感,并且它们还可用于根据结构连接预测功能连接。此外,结果表明,神经元活动的相轨迹编码低维动力学,相图形成的极限环吸引子的几何特性可用于解释神经动力学。此外,我们的结果表明,相图和模糊递归图可以使用真实的 fMRI 数据捕捉大脑中的功能连接,并且这两个指标都能够捕捉和解释特定认知任务期间的非线性动力学行为。总之,我们的研究结果表明,相图和模糊递归图可以作为非常有效的功能连接描述符,为大脑中的非线性动力学提供有价值的见解。
我们应该如何比较语言模型(LMS)和人类的能力?在本文中,我从比较心理学到这些比较中的挑战。i的重点是案例研究:递归嵌套的语法结构的处理。先前的工作表明,LMS无法尽可能可靠地处理这些结构。但是,为人类提供了指令和大量培训,而LMS则进行了零射击。i因此更加匹配评估。提供一个简单提示的大型LM(比人类培训的含量要少得多),即使在更深厚的嵌套条件下,LMS也比人类测试更深切的条件。此外,提示的效果对提示中使用的特定结构和词汇量是强大的。最后,重新分析现有的人类数据表明,人类最初可能不会在困难的结构上执行以上机会。因此,当对比较评估时,大的LMS确实可以像人类一样可靠地递归嵌套的语法结构。此案例研究强调了评估方法中的差异如何混淆语言模型和人类的比较。我通过反映了比较人类和模型能力的更广泛挑战,并突出了评估认知模型和基础模型之间的重要区别。
摘要。算术哈希函数已在素数上定义的函数已被积极开发和用于可验证的计算(VC)协议。在其中,基于椭圆曲线的蛇需要大的(256位及更高)的素数。与SHA-2/3(如SHA-2/3)相比,这种哈希功能的速度明显缓慢,最大损失了1000倍。在本文中,我们介绍了哈希函数摩天大楼,该摩天大楼针对大型素数,并且与钢筋混凝土和整体相比提供了重大改进。首先,对于所有大型素数,设计完全相同,这简化了分析和部署。其次,它通过使用低度不可变形转换并最大程度地减少模量降低,实现了与加密哈希标准相当的性能。具体而言,它在135纳秒中放映了两个256位序场(BLS12-381曲线标量场)元素,而SHA-256在同一台机器上需要42纳秒。摩天大楼的低回路复杂性以及其高天然速度应在许多VC场景中大大降低,尤其是在递归证明中。关键字:哈希函数·零知识·电路
第一年第一学期课程大纲 CSE 1101:结构化编程 学分:3.0 学时:每周 3L+0P 小时 编程概念和结构化编程语言:数据类型、变量、运算符、表达式类型、控制结构。 函数和程序结构:函数基础、参数传递约定、范围规则和存储类、递归、头文件、预处理器、数组。 字符串和指针:指针和内存寻址、数组和指针算法、字符串、算法。 用户定义数据类型:结构、结构位域、结构填充、联合、枚举。 输入和输出:标准输入和输出、格式化输入和输出、文件访问、动态内存分配、Valgrind、垃圾收集、可变长度参数列表、命令行参数、错误处理、图形例程简介、编译、制作文件、调试。
(L1) 第一单元:数理逻辑:命题演算:语句和符号、联结词、合式公式、真值表、同义反复、公式等价性、对偶律、同义反复蕴涵、范式、语句演算的推理理论、前提的一致性、间接证明方法、谓词演算:谓词、谓词逻辑、语句函数、变量和量词、自由和有界变量、谓词演算的推理理论。第二单元:集合论:集合:集合上的运算、包含-排斥原理、关系:性质、运算、分割和覆盖、传递闭包、等价性、兼容性和偏序、哈斯图、函数:双射、组合、逆、排列和递归函数、格及其性质。第三单元:组合学和递归关系:计数基础、排列、重复排列、循环和限制排列、组合、限制组合、二项式和多项式系数和定理。递归关系:生成函数、序列函数、部分分式、计算生成函数系数、递归关系、递归关系公式、通过代换和生成函数解决递归关系、特征根法、解决非齐次递归关系
摘要 — 尽管不断进行研究,但基于脑机接口 (BCI) 的通信方法尚不是一种有效可靠的手段,严重残疾的患者可以依赖这种手段。迄今为止,大多数基于运动想象 (MI) 的 BCI 系统使用传统的频谱分析方法来提取判别特征并对相关的基于脑电图 (EEG) 的感觉运动节律 (SMR) 动态进行分类,这导致性能相对较低。在本研究中,我们调查了使用递归量化分析 (RQA) 和基于复杂网络理论图的特征提取方法作为提高 MI-BCI 性能的新方法的可行性。这些特征植根于混沌理论,探索了 MI 神经反应背后的非线性动力学,作为对 MI 进行分类的新信息维度。方法:将六名健康参与者执行 MI-Rest 任务时记录的 EEG 时间序列投射到多维相空间轨迹中,以构建相应的递归图 (RP)。从 RP 中提取了八个基于非线性图的 RQA 特征,然后通过 5 倍嵌套交叉验证程序与经典光谱特征进行比较,以使用线性支持向量机 (SVM) 分类器进行参数优化。结果:与经典特征相比,基于非线性图的 RQA 特征能够将 MI-BCI 的平均性能提高 5.8%。意义:这些发现表明,RQA 和复杂网络分析可以为 EEG 信号的非线性特征提供新的信息维度,从而提高 MI-BCI 性能。
5. 将“C”语言结构应用于算法,编写“C”语言程序。 第一单元 一般基础知识:计算机简介:计算机框图、计算机的特点和局限性、计算机的应用、计算机的类型、计算机的世代。 算法和编程语言简介:算法 – 算法的主要特征、流程图、编程语言 – 编程语言的世代 – 结构化编程语言 – 正确、高效和可维护的程序的设计和实现。 第二单元 C 语言简介:简介 – C 程序的结构 – 编写第一个 C 程序 – C 程序中使用的文件 – 编译和执行 C 程序 – 使用注释 – 关键字 – 标识符 – C 中的基本数据类型 – 变量 – 常量 – C 中的 I/O 语句 – C 中的运算符 – 编程示例。决策控制和循环语句:决策控制语句简介 – 条件分支语句 – 迭代语句 – 嵌套循环 – Break 和 Continue 语句 – goto 语句 第三单元数组:简介 – 数组声明 – 访问数组元素 – 在数组中存储值 – 数组操作 – 一维、二维和多维数组、字符处理和字符串。 第四单元函数:简介 – 使用函数 – 函数声明/原型 – 函数定义 – 函数调用 – return 语句 – 传递参数 – 变量范围 – 存储类 – 递归函数。 结构、联合和枚举数据类型:简介 – 嵌套结构 – 结构数组 – 结构和函数 – 联合 – 联合数组变量 – 结构内的联合 – 枚举数据类型。
量子计算正在迅速发展到必须认真考虑其应用设计和工程方面的地步。然而,量子软件工程仍处于起步阶段,面临着许多挑战,特别是在处理量子编程语言的多样性和嘈杂的中型量子 (NISQ) 系统方面。为了缓解这些挑战,我们提出了 QFaaS,这是一个整体的量子函数即服务框架,它利用无服务器模型、DevOps 生命周期和最先进的软件技术的优势,推动 NISQ 时代下一代应用程序开发的实用量子计算。我们的框架提供了无服务器量子系统的基本元素,以简化云环境中面向服务的量子应用程序开发,例如结合混合量子-经典计算、自动化后端选择、冷启动缓解和采用 DevOps 技术。 QFaaS 通过集成多个知名的量子软件开发工具包(Qiskit、Q#、Cirq 和 Braket)、量子模拟器和云提供商(IBM Quantum 和 Amazon Braket),提供全栈统一的量子无服务器平台。本文提出了量子函数即服务的概念、系统设计、操作工作流程、QFaaS 的实施以及关于量子无服务器计算的优势和局限性的经验教训。我们还介绍了当今量子计算机和模拟器上各种量子应用的实际用例,以展示我们的框架促进正在进行的量子软件转型的能力。