4. Pelican 卫星计划在 325 公里(± 25 公里)的高度运行。如果 Planet Labs 卫星在此高度出现问题,卫星将在相对较短的时间内从轨道上衰减。这个特定高度与 SpaceX 最初部署卫星时使用的高度大致相同,即低于 350 公里,考虑到 SpaceX 的第一代卫星系统,我们将处置失败定义为在 350 公里或更高高度失去对卫星的控制的任何情况。7 同样,一旦 Planet Pelican 卫星被操纵到 325 公里的运行轨道,考虑到预期的剩余轨道寿命较短,我们不会将卫星失控视为与长期碰撞风险有关的重大问题。在这种情况下,我们采用的条件是 Planet Labs 报告在 350 公里以上高度失去对 Pelican 卫星的控制。 8 根据所报告的信息,许可证可能受附加条款和条件的约束,包括附加报告义务、对附加部署的限制、提前将卫星从轨道上移除的要求或任何其他适当的限制碰撞风险的条件。9 在此例中,纳入了 100 个故障后对象年指标,因为
摘要 - 量子交换机(QSS)服务量子通信网络中量子端节点(QCN)提交的请求,这是一个具有挑战性的问题,这是一个挑战性的问题,由于已提交请求的异构保真要求和QCN有限的资源的异质性保真度要求。有效地确定给定QS提供了哪些请求,这是促进QCN应用程序(如量子数据中心)中的开发。但是,QS操作的最新作品已经忽略了这个关联问题,并且主要集中在具有单个QS的QCN上。在本文中,QCN中的请求-QS关联问题是作为一种匹配游戏,可捕获有限的QCN资源,异质应用程序 - 特定的保真度要求以及对不同QS操作的调度。为了解决此游戏,提出了一个量表稳定的request-QS协会(RQSA)算法,同时考虑部分QCN信息可用性。进行了广泛的模拟,以验证拟议的RQSA算法的有效性。仿真结果表明,拟议的RQSA算法就服务请求的百分比和总体实现的忠诚度而实现了几乎最佳的(5%以内)的性能,同时表现优于基准贪婪的解决方案超过13%。此外,提出的RQSA算法被证明是可扩展的,即使QCN的大小增加,也可以保持其近乎最佳的性能。I. i ntroduction量子通信网络(QCN)被视为未来通信技术的支柱,因为它们在安全性,感知能力和计算能力方面具有优势。QCN依赖于Einstein-Podolsky-Rosen(EPR)的创建和分布,这是遥远QCN节点之间的纠缠量子状态[1]。每个EPR对由两个固有相关的光子组成,每个光子都会转移到QCN节点以建立端到端(E2E)纠缠连接。然而,纠缠光子的脆弱性质导致指数损失,随着量子通道(例如光纤)的行驶距离而增加。因此,需要中间量子中继器节点将长距离分为较短的片段,通过对纠缠的光子进行连接以连接遥远的QCN节点[2]。当此类中继器与多个QCN节点共享多个EPR对以创建E2E连接时,它们被称为量子开关(QSS)。
1 Ansh Nikhra 2000910200018 Rxlogix 2 Ayushi Ojha 2000910200028 K&S Partners,Emerson 3 Shruuti Mittal 2000910200095 Newgen 4 Utkarsh Singh 200091010200102001020010200107 K&S Partners,Samsunk 5 Yashaswini Srivastava 2000910200113 Newgen 6 Abhik Mourya 2000910210001 Paytm 7 Abhishek Singh Chauhan 2000910210003 K&S Partners 8 ATI GUPTA 20009101010016 CADENCE 9 RIII 9 RIIII Agrawal 2000910210043 UKG 10 Aaditya Pratap Malik 2000910310001 TCS Ninja 11 Aakarsh Gupta 2000910310002 Spark Minda,TCS Ninja 12 Abhishek Maurya Maurya 2000910101010101010101010 Spark Minda 13 2000910310017 Spark Minda 14 Aditya Singh 2000910310021 Akash Gupta 2000910310027 Spark Minda 16 Akash Shukla 2000910310029 Newgen 17 17 17 17 17 17 17 171010101010101010MM Bansal 2000910310031 Quontplay 19 Aman Maurya 2000910310032 Newgen 20 Amish Verma 2000910310033 Newgen 21 Amisha Pandney 2000910310034 UKG 22 AMIT GANGWAR Kandwal 2000910310042 Paytm 24 Anukriti Jaiswal 2000910310043 Acencencencenture,Newgen 25 Anushka Sribastava 200091010045 Accenture 26 Arnika Sharma Sharma 2000910310046 Immerson 27 2000910310054 Ericsson 28 Asmita Rai 2000910310055 K&S Partners 29 Ayush Narayan Sinha 2000910310057 Accenture,Newgen 30 Divyansh Goenka Goenka Goenka 2000910310063 UKG 31 ukg 31 Ggaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygaurang tygauragigigigigigiii 2000910310068 PAYTM 32 GAUURAV MISHRA 2000910310069 DACBY 33 HARSHIL AWASTHI 2000910310074 ACPENTURE 34 HARSHITA 2000910310075 NEWGEN NEWGEN 35 HRDYANSH PANDEY 200091010078 SHIN SHIN SHIN SHIN SHIN SHIN SHIN SHIN SHIN SHIN学习36 Hrithik Yadav 2000910310079 Avaada 37 Jatin Kumar Sharma 2000910310081 Persist Ventures
1。今天,我们朝着利用混合卫星 - 地球网络的力量迈出了重要一步,将每个人与现代通信服务联系起来。我们采用的监管框架(世界上第一个同类的框架)将使卫星运营商和陆地服务提供商之间的合作能够使用以前仅分配给Torrestrial Service的频谱直接向消费者手机提供无处不在的连接。我们预计,来自太空或SC的补充覆盖范围将使在不覆盖地面网络覆盖的地区的消费者通过基于卫星的通信使用其现有设备连接。scs是委员会对“单个网络未来”的愿景的关键组成部分,在该愿景中,卫星和地面网络无缝地工作,以提供覆盖范围,这两个网络都无法自行实现。
单元 -I 无线通信系统简介:移动无线电通信的发展,无线通信系统的示例 - 寻呼系统、无绳电话系统、蜂窝电话系统、常见无线通信系统的比较、蜂窝无线电和个人通信的趋势。现代无线通信系统:第二代 (2G) 蜂窝网络、第三代 (3G) 无线网络、无线本地环路 (WLL) 和 LMDS、无线局域网 (WLAN)、蓝牙和个人局域网 (PAN)。第二单元:移动无线电传播:大规模路径损耗:无线电波传播简介、自由空间传播模型、功率与电场的关系、三种基本传播机制、反射-电介质反射、布儒斯特角、完美导体反射、地面反射(双射线)模型、衍射-菲涅尔区几何、刀刃衍射模型、多重刀刃衍射、散射、室外传播模型-Longley Ryce 模型、Okumura 模型、Hata 模型、Hata 模型的 PCS 扩展、Walfisch 和 Bertoni 模型、宽带 PCS 微蜂窝模型、室内传播模型-分区损耗(同一楼层)、楼层间分区损耗、对数距离路径损耗模型、爱立信多断点模型、衰减因子模型、信号穿透建筑物、射线追踪和特定站点建模。第三单元:移动无线电传播:小规模衰落和多径小规模多径传播 - 影响小规模衰落的因素、多普勒频移、多径信道的脉冲响应模型 - 带宽与接收功率之间的关系、小规模多径测量 - 直接射频脉冲系统、扩频滑动相关器信道探测、频域信道探测、移动多径参数
过去几年,此类电话数量不断增加,因为这项技术现在有可能通过模仿名人、政治候选人和近亲的声音,用错误信息迷惑消费者。虽然目前州检察长可以针对不受欢迎的人工智能语音生成的自动电话的结果(例如他们试图实施的诈骗或欺诈)进行打击,但这一行动现在使使用人工智能生成这些自动电话的声音本身成为非法行为,扩大了州执法机构追究这些肇事者责任的法律途径。
Michael P. Fitz 既是电子通信教师,也是电子通信系统设计师。他曾担任加州大学洛杉矶分校 (UCLA)、俄亥俄州立大学和普渡大学的电气和计算机工程教授。Fitz 教授于 1995 年获得普渡大学的 D. D. Ewing 本科教学奖。Fitz 教授是 IEEE 通信学报的编辑委员会成员。Fitz 博士曾在多家公司担任数字通信系统工程师,目前是诺斯罗普·格鲁曼公司的高级通信系统工程师。在这些职位上,他设计、制造和测试了陆地移动和卫星通信应用的调制解调器。他因在时空调制解调器技术方面的贡献而获得了 2001 年 IEEE 通信协会 Leonard G. Abraham 通信系统领域论文奖。
2. 委员会已采取一系列有针对性的措施,以保护国家通信网络免受潜在的安全威胁。今天,我们在这些努力的基础上,与国会和行政部门同时采取的行动保持一致,并确保委员会普遍服务基金(USF 或基金)中使用的公共资金不会以破坏或威胁我们国家安全的方式使用。具体而言,在本报告和命令中,我们通过了一项规则,禁止使用 USF 资金购买或获得任何由对通信网络或通信供应链的完整性构成国家安全威胁的受监管公司生产或提供的设备或服务。为此,我们最初将华为技术公司(华为)和中兴通讯股份有限公司(中兴通讯)指定为本规则的受监管公司,并建立了一个流程,以便将来指定更多受监管公司。
未决问题。5 2024 年 IPCS 通知的提交截止日期定为 2024 年 10 月 21 日(初步意见)和 2024 年 11 月 19 日(答复意见)。6 委员会另外发布了针对 2024 年 IPCS 命令的 60 天 PRA 通知,该通知于 2024 年 10 月 25 日在《联邦公报》上公布,确定 2024 年 12 月 24 日为针对该 PRA 通知提交意见的截止日期。7 此外,该局和消费者和政府事务局(各局)于 2024 年 9 月 11 日发布了一份公告,邀请补充意见,以根据委员会在 2024 年 IPCS 命令中采用的规则,更新和扩展有关委员会 IPCS 年度报告和认证要求的记录。 8《联邦公报》于 2024 年 10 月 3 日发布了此公告,规定提交意见的截止日期为 2024 年 11 月 4 日,提交答复意见的截止日期为 2024 年 11 月 18 日。9
Kerry Murray 将担任副局长兼参谋长,Jennifer Gilsenan、Troy Tanner 和 Patrick Webre 将担任副局长。Stephen Duall 被任命为副局长,Karl A. Kensinger 被任命为特别顾问。Whitney Lohmeyer 和 Jeanette Kennedy 已加入 FCC,分别担任首席技术专家和副局长。此外,Merissa Velez 将担任卫星计划和政策司司长,Kathyrn Medley 将担任卫星许可司代理司长,Franco Hinojosa 被任命为地面站许可司司长。Jeanine Poltronieri 和 Guillermo (Bill) Belt 被任命为卫星计划和政策司副司长,Jay Whaley 将担任卫星计划和政策司副司长。