abtract本文在工业测试台上介绍了两项无线测量活动:工业车辆到车辆(IV2V)和工业车辆到工业 - 弗拉图和传感器(IV2I+),并提供有关两个捕获的数据集的详细信息。IV2V涵盖了移动机器人和固定机器人之间的侧链链路通信方案,而IV2i+是在自主清洁机器人连接到私人蜂窝网络的工业环境中进行的。在综合测量方法中,不同的通信技术的组合提供了洞察力,可以通过ML来利用这些洞察力,例如鳍片,视线识别,视线检测,服务质量的预测或链接选择。此外,数据集可公开可用,标记和预先贴上,以快速登机和适用性。
JoãoPedroCalado Barradas Branco St. Sciences和Information Technologies博士学位于2022年,主题是论文设计的无线通信方案,用于在毫米波带和THZ中进行超快速通信的无线通信计划。目前是里斯本ISCTE-大学应用学院应用数字技术学院应用数字技术系的辅助老师。其研究兴趣从属于无线通信网络,网络安全,大数据和机器学习领域。是IEEE的成员,也是成本 - 欧洲科学与技术合作的成员,它与来自各个国家的专业人员合作,开发以智能无线电通信领域为中心的解决方案,以进行包容性互动而无需不连续。此外,您的另一种协作与可靠和弹性6G系统的物理层安全解决方案的开发有关。它作为当地的组织者和各种会议和研讨会的审稿人参与。也是科学和信息技术领域的各种杂志的审稿人。
脑机接口 (BCI) 是一种不依赖于大脑周围神经和肌肉正常输出通路的通信系统。无线脑机接口 (WBCI) 系统是 BCI 系统的一个分支,它采用一种独特的方法来获取大脑的电活动,即脑电图 (EEG),使用有效的非侵入式植入电极方案,并采用无线通信方案传输获取的 EEG 进行进一步处理。五个最重要的安全和隐私问题是身份验证、访问控制、恶意行为、加密和通信。通过在 6G 技术背景下适当实施无线 BCI,本章全面概述了 WBCI 和 6G 技术,并概述了基于人工智能的方案在解决因 6G 网络部署到围绕 WBCI 的环境中而产生的安全和隐私问题方面的效用。
我们考虑了两方使用的量子继电器,以执行几种连续变化的量子通信方案,从纠缠分布(交换和蒸馏)到量子传送,以及量子键分布。这些方案的理论适当地扩展到了一个非马克维亚的脱位模型,其特征在于玻色子环境中相关的高斯噪声。在最坏的情况下,双方纠缠在继电器中完全丢失了,我们表明,通过环境中的经典(可分离)相关性可以重新激活各种协议。实际上,这些相关性能够保证较弱的纠缠形式(Quadripartite)的分布,该分配可以通过继电器将其定位为较强的形式(双方),而当事方可以利用。我们的发现是由原则证明实验确定的,在第一次我们表明环境中的记忆效应可以大大增强量子继电器的性能,远远超出了单一重型仪的量子和私人通信。
自从诞生以来,密码学就陷入了一个恶性循环:密码学家不断发明隐藏信息的方法,而密码分析员则不断破解这些方法,这促使密码学家发明更复杂的加密方案,等等。但量子信息技术能打破这个循环吗?乍一看,这似乎只是将密码学家和密码分析员之间的竞争提升到了一个新的水平。事实上,量子计算机将使当今大多数公钥密码系统变得不安全。尽管如此,我们有充分的理由相信密码学家最终会战胜密码分析员。量子密码学使我们能够构建通信方案,其保密性仅依赖于物理定律和对加密硬件的一些最低限度的假设——基本上没有攻击的余地。虽然我们还没有做到这一点,但本文概述了量子密码学的原理和最新技术,并评估了当前面临的挑战和克服这些挑战的前景。
摘要 - 使用加密信号检测攻击是具有挑战性的,因为加密隐藏了其信息内容。我们提出了一种新的机制,用于在不使用解密,安全通道和复杂通信方案的情况下使用错误(LWE)加密信号进行学习的新型机制。相反,检测器利用LWE加密的同态特性来对加密样品的转换进行假设检验。特权转换是通过解决基于硬晶格的最小化问题的解决方案来确定的。虽然测试的敏感性会因次优溶液而恶化,类似于打破加密系统的(相关)测试的指数恶化,但我们表明该劣化对于我们的测试是多项式的。可以利用此速率差距来选择导致加密较弱但检测能力的较大收益的参数。最后,我们通过提供一个数值示例来结束论文,该示例模拟异常检测,证明了我们方法在识别攻击方面的有效性。
当前,尽管仍然缺少量子数据平面和量子控制平面之间的标准区别,但初步工作表明,在功能上,以单个Qubits和纠缠对的粒度运行的经典控制消息是在功能上,而与控制平面消息更接近经典数据包头。因此,通过为其整体开销做出贡献,它们被视为量子数据平面的一部分。因此,需要在量子互联网中重新定义吞吐量的概念。这篇论文的目的是阐明这一关键方面。具体来说,我们进行了理论分析,以了解确定量子数据平面上开销的因素及其对吞吐量的反射。该分析对于设计任何有效的量子通信方案至关重要且初步。具体来说,我们在不同情况下得出了吞吐量的封闭形式表达式,并披露了吞吐量,纠缠吞吐量和经典比特率之间的非线性关系。最后,我们通过在IBM Q-体验平台上进行的数值结果来验证理论分析。
摘要 - 集中感知(CP)表明,在智能无人系统(IUSS)中实现了更全面和可靠的环境实现。然而,由于CP任务的特征和无线通道的动态,CP的实施仍然面临着关键的挑战。在本文中,提出了一个面向任务的无线通信框架,以共同优化通信方案和CP程序。我们首先提出了渠道自适应压缩和鲁棒融合方法,以在无线通信约束下提取和利用最有价值的语义信息。然后,我们提出了一种面向任务的分布式调度算法,以确定在动态环境下的CP的最佳合作者。主要思想是在安排时学习,其中协作实用程序可以通过低计算和沟通开销有效地学习。在连接的自主驾驶场景中进行案例研究以验证拟议的框架。最后,我们确定了几个未来的研究方向。
摘要 - 该论文研究了单个握手用户向卫星群的上行链路传输,重点是利用卫星间链接以实现合作信号检测。研究了两例:一个案例具有完整的CSI,另一个具有卫星之间的部分CSI。用容量,开销和位错误率进行比较两种情况。此外,在两种设计中都分析了通道估计误差的影响,并提出了强大的检测技术将通道不确定性处理到一定水平。显示了每种情况的性能,并与传统的卫星通信方案进行了比较,其中只有一个卫星可以连接到用户。我们的研究结果表明,轨道上总共有3168颗卫星的拟议星座可以通过与12个卫星与500 MHz的带宽合作并占据800 Mbits/sec的容量。相比之下,对于最近的卫星,具有相同系统参数的常规卫星通信方法的容量明显低于150 mbits/sec。
在本研究中,我们提出了一种双向量子通信方案,其中两个合法参与者使用四量子比特簇状态作为量子信道相互交换量子信息。最近,Kazemikhah 等人 [ Int. J. Theor. Phys., 60 (2021) 378] 利用四量子比特簇状态作为量子信道,尝试设计一种两个合法参与者之间相互交换量子信息的方案。然而,在本研究中,已经证明在他们的方案中无法实现量子信息的传输,因为由于 Kazemikhah 等人在描述量子信道时犯了一个微不足道的概念错误,两个参与者彼此并不纠缠。在这里,我们已经证明,两个合法参与者可以使用四量子比特簇状态作为量子信道相互传送量子信息态,只要他们相互合作并执行非局部控制相位门操作。如果双方不相互合作,那么就没有人能够重建发送给他们的信息,因此只有双方彼此诚实时才有可能进行信息交换。