量子通信理论专注于研究传输量子信息的量子信道,其中传输速率由量子信道容量来衡量。这个量表现出几个有趣的特性,例如非可加性、超激活等等。在这项工作中,我们表明,一种被称为抗降解单模高斯信道的量子信道(其容量被认为为零)可以通过引入量子纠缠来“激活”以传输量子信息。虽然信道的输出本身不能用于检索输入信号,但将其与额外的纠缠相结合可以实现这一点。除了理论意义之外,这种激活还可以在实际系统中实现。例如,在双模压缩相互作用机制中用于量子转导的电光系统中,转导通道是抗降解的。我们证明该系统可以在与辅助模式的纠缠的帮助下传输微波光量子信息。这样就产生了一种新型的量子换能器,它在很宽的参数空间上表现出正的量子容量。引言——量子通道模拟了量子信息在时间或空间中的传输。研究各种噪声量子通道及其潜在的信息传输速率——量子通道容量——是量子通信理论的核心。与经典量子通道容量不同,量子通道容量没有简单的公式,其评估通常涉及计算困难的所谓双字母优化[1,2]。因此,量子容量表现出一系列不寻常的行为,如活化和超活化[3-6],这反映了量子信息在通道中传播的非平凡方式。只有少数特定类型的量子通道的量子容量的确切值才是已知的。有一种这样的信道被称为抗降解信道,它已被证明具有零量子容量 [ 7 , 8 ],这意味着没有量子信息能够以零误差通过该信道。在本文中,我们表明,如果将一种抗降解玻色子高斯信道与辅助信道相结合,则可以实现非零量子信息传输速率
序号课程代码 课程名称 LTP 课程类型 1 ECC201 电子设备 3-0-0 理论 2 ECC202 信号与网络 3-1-0 理论 3 ECC203 数字电路与系统设计 3-0-0 理论 4 ECC204 数字系统设计实验室 0-0-2 实践 5 ECC205 信号与网络实验室 0-0-2 实践 6 ECC206 模拟电路 3-1-0 理论 7 ECC207 电磁理论 3-0-0 理论 8 ECC208 控制系统 3-0-0 理论 9 ECC209 微处理器与微控制器 3-0-0 理论 10 ECC210 电子设备与电路实验室 0-0-3 实践 11 ECC211 微处理器与微控制器实验室 0-0-2 实践 12 ECC301 通信系统原理 3-0-0理论 13 ECC302 数字信号处理 3-0-0 理论 14 ECC303 VLSI 设计 3-0-0 理论 15 ECC304 数字信号处理实验室 0-0-3 实践 16 ECC305 通信系统实验室 0-0-3 实践 17 ECC306 数字通信 3-0-0 理论 18 ECC307 微波工程 3-0-0 理论 19 ECC308 数字通信实验室 0-0-3 实践 20 ECC309 微波工程实验室 0-0-2 实践 21 ECC401 项目 - I 0-0-0 (6) 非接触 22 ECC402 项目 - II 0-0-0 (6) 非接触 23 ECC500 高级通信理论 3-0-0 理论 24 ECC501 高级光通信 3-0-0 理论 25 ECC502 基于 HDL 的系统设计 3-0-0 理论 26 ECC503 概率论与线性代数 3-0-0 理论 27 ECC504 通信系统基础 3-0-0 理论 28 ECC505 数值方法与优化技术 3-0-0 理论 29 ECC506 VLSI 技术 3-0-0 理论 30 ECC507 电子工程实验室 - I 0-0-3 实践 31 ECC508 电子工程实验室 - II 0-0-3 实践 32 ECC509 基于 HDL 的系统设计和项目实验室 0-0-2 实践 33 ECC510 电路仿真实验室 0-0-2 实践 34 ECC511 嵌入式系统设计和项目实验室 0-0-2 实践 35 ECC512 物理设计和 EDA 实验室 0-0-2 实践36 ECC542 微波传输线和匹配网络 3-0-0 理论 37 ECC580 数学和仿真技术 3-0-0 理论 38 ECC581 研究方法 3-0-0 理论 39 ECC582 数字 VLSI 电路设计 3-0-0 理论 40 ECC583 VLSI 与通信系统实验室 0-0-3 实践 41 ECC584 射频与光子学实验室 0-0-3 实践 42 ECC597 论文 0-0-0 (36) 非接触式 43 ECC598 论文 0-0-0 (18) 非接触式 44 ECC599 论文 0-0-0 (S/X) 旁听 45 ECS401 实习 0-0-0 (S/X) 非接触式