Mission关键服务已由3GPP定义,并且自发行版本开始以来的规格已增长。从那以后,人们认识到公共安全机构(PSA)通过利用新技术来增强任务关键沟通能力,即LTE无线电访问技术,增强的MBM(多媒体广播/多播服务),IP多媒体子系统(IMS)平台以及新的5G服务集。导致任务关键宽带网络的发展,使Mission Critical Communications除了语音外交换多媒体内容并获得了移动宽带访问的好处;还允许将关键沟通扩展到社会和行业的部门,而不是最典型的关键通信用户,即所谓的“蓝灯”机构(警察,救护车和消防队)。
分析纯粹的“手动”和纯粹的“机器”控制的缺点使我们能够得出结论,在操作管理任务中有效使用计算机是创建交互式系统的,在这些系统中,计算机快速,准确地执行复杂计算的能力与提供给人的机会相结合的能力将其结合在一起,以评估该解决方案(包括通过非正式的批准),并予以确定的量度,并予以确定。用计算机直接通信用户可以提高决策的效率。用户与计算机的对话框通信是在计算机上解决问题的过程,在该过程中,操作员采取活动部分以获取必要的信息,控制决策过程,输入和校正初始数据以及在各种情况下的决策。因此,组织了一个人类机器复合物,其中用户执行尚不可用于计算机的功能,或者有助于考虑在解决问题过程中表现出来的因素。同时,运营商使用非正式的偏好系统评估了问题解决方案的质量,并以靠近最佳操作条件做出决定,并满足找到或继续搜索的解决方案[1]。
摘要 本文提出了一种新的量子密钥分发(QKD)协议,即基于伪随机基纠缠光子的 QKD(PRB-EPQKD)协议。最新协议主要关注三个属性,包括协议的安全性、安全密钥大小和合法通信用户(Alice 和 Bob)之间的最大通信距离。为了实现这一点,我们首先考虑一个位于低地球轨道(LEO)型卫星上的自发参数向下(SPDC)光子源,该光子源能够产生并向 Alice 和 Bob 分发纠缠光子对。其次,我们假设 Alice 和 Bob 的光子状态测量基是通过伪随机数生成器(PRNG)相同生成的,即量子逻辑映射(QLM)。最后,我们还假设除了光子状态之外,Alice 和 Bob 还故意在每个脉冲上共享一组强度随机的诱饵状态,目的是检测窃听者(Eve)的存在。基于这些考虑,我们利用 Gottesman-Lo- Lutkenhaus-Preskill (GLLP) 公式评估了两种不同实现(即基于非诱饵状态和无限主动诱饵状态的 QKD)的安全密钥速率上限。与现有协议相比,安全密钥大小和通信距离都有显著改善,因为我们意识到在日光、下行卫星条件、精心选择的光源和良好的晶体特性下,最大通信距离可达 70000 公里。此外,使用组合的 I 型和 II 型 SPDC 光子源作为我们的纠缠光子对发生器,显著提高了光子平均数,使我们的协议对光子数分割攻击和衰减引起的大气传播更具鲁棒性。此外,该协议与现有协议相比更加安全,因为任何窃听者必须同时破解用作 PRNG 的混沌系统和 QKD 系统,才能获得有关 Alice 和 Bob 使用的测量基的任何有用信息,从而获得安全密钥。