ODF_01 Pushing the Limits of Deflectometry: Achieving Interferometric Accuracy in Large Optics Testing Oral Presentation ODF_03 Performance Evaluation of Astronomical Images Using Noise Characterization Oral Presentation ODF_04 Optical Design of Telecentric Eyepiece for Optically Fused Imagers Oral Presentation ODF_10 Miniaturized Wide Field of View MWIR Optics for Missile Coordinate Determination Oral Presentation ODF_12基于光的实验方法,以估计1D亚波长度聚合物相位栅格的大凹槽深度口腔呈递ODF_24 ODF_24关于VNIR镜头组装性能的比较研究,并具有球形和非球形设计口腔设计HOL_02衍射通用型态度差异差异差异差异 - 数字重建算法用于数字在线全息口腔呈现HOL_09 HOL_09具有高阶复合涡流的光场生成口服呈现HOL_12 HOL_12平行相移数数字全息图和图像处理,用于语音安全性hol_16使用GS Algority holgor_99 Vortex Fresnel镜头相掩码和线性典型转换口服口头呈递
CAR-T细胞疗法作为一种新型免疫疗法,在临床实践中取得了重大突破,特别是在治疗B细胞相关白血病和淋巴瘤方面。然而,它仍然面临着持久性差、增殖能力有限、制造成本高、疗效不理想等挑战。CRISPR/Cas系统是一种高效、简单的精准基因编辑方法,为优化CAR-T细胞提供了新的可能性。它可以提高CAR-T细胞的功能,降低制造成本。CRISPR/Cas9技术与CAR-T细胞疗法的结合可能会促进该疗法的发展,为癌症患者提供更有效、更个性化的治疗。同时,该技术在CAR-T细胞中的应用的安全性问题需要进一步的研究和评估。未来的研究应侧重于提高CRISPR/Cas9技术的准确性和安全性,以促进CAR-T细胞疗法的更好地开发和应用。本综述主要介绍CRISPR/Cas9技术在CAR-T细胞治疗中的应用,包括消除免疫检查点的抑制作用、增强CAR-T细胞的抗衰竭能力、辅助构建通用型CAR-T细胞、降低CAR-T细胞的制造成本以及面临的安全性问题,旨在为科研人员展示CRISPR/Cas9技术在CAR-T细胞治疗中的革命性作用。
控制器等方面提出了工效学设计要求。 从国外组织来看,国外涉及船舶驾驶室操控界面的标准主要包括:国际海事组织IMO 于2000 年制定的标准《船桥设备和布局的工效学指南》( MSC/ Circ.982 ) [16] ,内容涉及船桥(包括驾驶室)布置、 作业环境、工作站布置、报警、控制界面、信息显示、 交互控制等7 个方面的驾驶室人机界面设计要求。国际海上人命安全公约SOLAS 于2007 年制定的标准《船桥设计、设备布局和程序》( SOLAS V/15 ) [17] , 内容涉及驾驶室功能设计、航海系统及设备设计、布置、船桥程序等,其显着特点是对于驾驶室团队管理作出相关要求,包括船桥程序、船员培训等。 从各个国家来看,美、英等西方国家在军事系 统工效学方面的研究已具有较大的规模,也制定了 一系列军用标准。美国军方军事系统的人机工程学设计准则包括“ 人机工程系统的分析数据” ( MIL.H.sl444 ) [118] , “ 军事系统人机工程学设计准则” ( MIL.STD.1472F ) [19] ,以及1999 年修订的“ 人机工程过程和程序标准” ( MIL.STD.46855A ) [20] 。 MIL-STD-1472 的第一版发布于20 世纪60 年代( 1968 年),在第二次世界大战期间,当时各交战国竞相发展新的高性能武器装备,但由于人机界面设计上的不合理,人难以掌握这些新性能的武器,导致发生了许许多多事故。因此,二次大战结束后,首先美国陆航部队(以后成为美国空军)和美国海军建立了工程心理学实验室,进行了大量的控制器、显示器等的人因素研究,获得了大量的数据,并开始将这些研究成果汇编成手册或制订成各种有关人类工程学的标准或规范。 MIL-STD-1472 就是在这样的时代背景下产生 的。该标准是为军用系统、子系统、设备和设施制定通用人类工程学设计准则,由美国陆军、海军和空军等多个单位评审,美国国防部批准,并强制性要求美国国防部所有单位和机构使用,具有较广泛的影响。 该标准在控制 - 显示综合和控制器章节有针对控制器 通用设计规则的阐述。 美国在船舶人机工程领域的投入力度也较大,不但开展了一系列的船舶人机工程专项试验,而且颁布了多项船舶人机工程设计标准和文件,主要侧重于研究人机环境对船舶的战斗力的影响。其中, ASTMF 1166—88 海军系统装备和设施的人因素工程设计标准是一个通用型标准,涵盖了控制、显示和告警、楼梯和台阶、标识和计算机、工作空间布局等海军设计的所有元素[21 ] 。 英国国防部于2005 年组织建立的船舶SRDs 系统,对船舶人机界面涉及的多方面问题进行梳理和整合,将人机界面研究作为船舶系统设计的一个重要环节,以提高人机界面设计在船舶项目中的优先级别。 英国国防部 2009 年的 MARS 项目计划,将早期人机 界面设计干预纳入到舰艇设计系统中,并委任专业公