摘要:与神经发育障碍 (NDD) 和特征相关的 DNA 序列变异(单核苷酸多态性或变异,SNP/SNV;拷贝数变异,CNV)通常映射到假定的转录调控元件上,特别是增强子。然而,这些增强子控制的基因仍然定义不清。传统上,给定增强子的活性及其与序列变异相关的可能改变的影响被认为会影响最近的基因启动子。然而,在神经细胞染色质中获得全基因组长距离相互作用图挑战了这种观点,表明给定的增强子通常不与最近的启动子相连,而是与更远的启动子相连,跳过中间的基因。在本篇观点中,我们回顾了一些最近的论文,这些论文生成了长距离相互作用图谱(通过 HiC、RNApolII ChIA-PET、Capture-HiC 或 PLACseq),并将已识别的长距离相互作用 DNA 片段与与 NDD(如精神分裂症、躁郁症和自闭症)和特征(智力)相关的 DNA 序列变体重叠。这种策略允许将承载 NDD 相关序列变体的增强子的功能归因于位于线性染色体图谱远处的连接基因启动子。其中一些增强子连接基因确实已被鉴定为导致疾病,通过鉴定基因蛋白质编码区(外显子)内的突变,验证了该方法。然而,重要的是,连接基因还包括许多以前未在其外显子中发现突变的基因,指向 NDD 和特征的新候选贡献者。因此,长距离相互作用图谱与检测到的与 NDD 相关的 DNA 变异相结合,可用作识别新的候选疾病相关基因的“指针”。基于 CRISPR-Cas9 的方法对涉及增强子和启动子的长距离相互作用网络进行功能操控,开始探索已识别相互作用的功能意义以及所涉及的增强子和基因,从而提高我们对神经发育及其病理学的理解。
另一方面,基因组测序技术的进步不仅允许如上所述进行早期诊断,而且还彻底改变了治疗和药物的发展。传统药物的开发阻止或促进引起疾病发作的蛋白质和代谢级联反应的标准化,无论是小分子还是生物制药,在时间,劳动和成本上都非常强。但是,通过鉴定病原基因,可以将药物的靶靶本身从蛋白质转换为DNA(基因表达)或RNA(转录本),以及核酸(核酸药物和基因治疗药物)可以使用来识别靶标,从而使其更易于设计药物分子。同时,2013年发表的CRISPR-CAS9基因组编辑方法使修改靶基因序列非常容易,该靶基因序列以前很难,并进一步将上述核酸处理推向下一阶段。修改时,您只需发送与要修改的序列相对应的引导RNA(GRNA),并将其切割的cas9蛋白裂解以以某种方式促进对靶细胞或基因的修饰。但是,为了真正利用包括CRISPR-CAS9在内的基因组编辑技术进行实际处理,需要克服许多问题,例如脱靶问题和CAS9抗体的产生。表演者首先发现,当引起感染性疾病的细菌获得对抗生素的抵抗力时,该病毒已通过使用极其奇怪的机制来抗药性,即在基因组中创建新基因:自我基因组编辑机(Podir System(Podir System)(申请人)(由申请人命名),并通过实验证明了这种机制在所有机制中都存在于所有生物中,这些机制既有生命的生命有机疾病,又有生物是生物。根据设计的人为地编辑基因组的序列,并开发了一种全新的概念国内基因组编辑方法:ST方法可以实现非常准确的基因组编辑,并且可以在本演讲中启用个人的能力
马赛癌症研究中心(CRCM)隶属于Inserm(UMR1068),CNRS(UMR7258),AIX-MARSELILLE大学(UM105)和PACA地区,Paoli-Calmettes Institute(IPC)的癌症中心。它以Coretech的形式包括19个团队中的近450人和19个技术平台/协调的技术平台。这是一个代表25个国籍的中心,与最大的国民和国际机构合作,并且是多个癌症研究卓越网络的成员。CRCM研究涉及癌症研究的基本方面,从启动到癌症的发展再到其以更具侵略性(转移)形式的分散,通过鉴定分子改变,基因组及其修复的不稳定性机制,以及通过研究其在体外和体内环境中的功能后果。肿瘤微环境和免疫系统的贡献是CRCM研究的另一个重要领域。这项跨学科研究是在分子,细胞和病理生理水平上使用简单或复杂的细胞模型(类器官)或动物中的肿瘤过程阶段进行的。这些多尺度方法使您有可能确定新的治疗靶标,并旨在开发针对癌细胞或其环境改变的创新方法,以便迈向新的治疗方法。转化和临床研究使您可以识别新的预后和诊断生物标志物,并启动与实验室活动紧密相关的创新临床试验,这是CRCM和IPC的另一个主要资产。基本的 - 翻译 - 临床科学的连续性是CRCM商标,与IPC的建立任务是一致的,这是患者的护理,教育,研究和创新,并且反映在研究人员和临床医生之间的许多共同出版物中。在其行政和金融服务的帮助下,CRCM管理团队为这项研究工作提供了必要的支持,并促进了技术转移和社会经济估值的强大政策。CRCM还通过参与Aix-Marseille大学的硕士和博士学位以及癌症和免疫学,成像和人工智能的硕士学位和博士学位,从而参与了培训。
Building on the fi rst Volume of Multifaceted Genes in Amyotrophic Lateral Sclerosis- Frontotemporal Dementia, this new Research Topic includes papers focusing on the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in European ancestry populations, the C9orf72 hexanucleotide repeat expansion mutation.Broce等。通过鉴定出与C9ORF72相似的区域共表达模式的基因,探索了ALS-FTD光谱中共有遗传风险的神经解剖学基础。旨在阐明为什么某些大脑区域易受C9ORF72连接的ALS -FTD中神经退行性的影响,作者发现了C9ORF72相关的基因网络,该网络也跟踪了C9ORF72重复扩张载体中的皮质厚度。最后,他们表明该网络富含脑细胞群体和已知在ALS-FTD中有选择性易受伤害的区域,并研究了所涉及的分子途径。另一个有趣的方面涉及c9orf72 Als-ftd中的中间长度重复等位基因。它们的精确作用仍然未知,但是这些等位基因比重复扩展要频繁得多。因此,如果他们构成疾病风险,那么ALS患者的显着比例可能会受益于针对C9ORF72重复扩张的发育治疗方法。在芬兰人口中,Kaivola等人。识别一个单倍型,其中包含一个中等长度等位基因的子集,从而增加了ALS的风险。作者还在Finngen Biobank队列中表明,这种单倍型会降低80岁以后的生存,这可能对ALS-FTD以外的其他神经退行性疾病有影响。该研究主题还集中于其他造成疾病的遗传基因座。特别是Miura等人的研究。报告了携带p的ALS-FTD的零星案例。 VCP基因中的ARG89TRP错义变体。VCP遗传变异物被预测会改变这种氨基酸残基,以前已经在被诊断为FTD-DISTAL肌病的患者中发现,并且使用ALS,进一步证明该基因可以引起表型多效性。这强调了在ALS和FTD患者中研究VCP遗传变异的重要性,即使在没有这些疾病家族史的患者中。
同种异体造血细胞移植(HCT)在过去几十年中,通过增强的支持性护理,降低强度调节(RIC),改善人类白细胞抗原(HLA)键入以及新型的移植物抗疗法 - 抗疗法疾病(GVHD) - 抑制和治疗策略和治疗策略。最值得注意的是,移植后环磷酰胺(PTCY)的实施显着提高了这种挽救生命疗法的安全性和可用性。随着这些进步的降低,非船舶死亡率(NRM),HCT社区更加重视发展减少复发的方法 - HCT后的主要死亡原因。使用RIC HCT时,免受复发的保护主要依赖于移植物 - 白细胞(GVL)反应。供体淋巴细胞输注(DLI),继发性细胞疗法,检查点抑制和HCT后维持策略代表了旨在增强或与HCT的GVL效应协同作用的方法。优化供体选择算法以利用GVL代表了另一个活跃的研究领域。这些策略中有许多旨在利用T细胞的影响,T细胞的影响数十年来一直是GVL的主要介体,也是调查重点减少。但是,利用自然杀手(NK)细胞产生有效抗肿瘤作用的能力的兴趣越来越大。基于NK细胞的方法比T细胞介导的潜在优势是减少NRM的潜力。大多数以T细胞为中心的复发预防策略必须权衡复发减少的好处,而GVHD的NRM风险增加。通过减少感染,而不会增加GVHD的风险,NK细胞可能会减轻NRM,同时仍然通过鉴定和清除癌细胞而减少复发。相比之下,NK细胞有可能减少两者,并有可能明显地倾斜量表,以支持生存。在这里,我们将回顾NK细胞在GVL中的作用,NK细胞匹配或不匹配的优化以及NK细胞疗法研究的迅速研究领域,例如收养转移和嵌合抗原受体(CAR)NK细胞。
快速工业化促使经济增长和人口增加,但也导致了重大的环境问题和能源短缺。要有效地应对这些挑战并朝着碳中性能源框架迈进,检查清洁能源选择并减少对化石燃料的依赖至关重要。在这些替代方案中,由于其能量密度和环境亲和力(既丰富又可再生),氢气作为领先的候选者脱颖而出。本研究对根据国家和作者身份进行了详细概述了有关氢吸附和存储的年度科学活动。该研究旨在评估该领域的演变,其主题转变以及全球合作的动态。目前的研究是在2000年至2022年的数据库Web网络网络网络中进行的,使用了与氢吸附,存储和密度功能理论相关的一组预定的关键字集。用RSTUDIO的BiblioMetrix软件包分析了检索到的数据,以评估出版趋势,三个不同时期的研究进化和全球协作网络。当前的研究重点是确定总共2183个文档,后来根据其与氢存储主题相关的评估和组织。在本工作中,评估了881篇文章的资格,通过学位和Pagerank指标确定了60项关键研究,研究的演变在整个三个关键阶段都深入研究。该研究探讨了国家之间的全球合作网络,并确定了该领域的有影响力的作者和领先期刊。所确定的三个不同时期是:初始阶段(2000-2008),其标志着离子液体和氢存储的基本工作。中级阶段(2009-2015)见证了科学生产的增加,以关注金属有机框架的基本原理和方法论。当前阶段(2016-2022)的特征是最佳生产力,突出了对纳米管和电催化剂的创新研究,这些研究促进了有效产生氢的生产。通过鉴定关键趋势,这项研究突出了正在重塑氢存储景观的新型材料和技术的出现。这样的进步指向未来研究和创新的潜在方向,从而在可持续能源解决方案的发展中发挥了至关重要的作用。这项文献计量学研究对定义氢吸附和储存研究领域的不断发展的趋势,贡献和协作动力学有很大的见解。
自身免疫性和与药物消耗有关的自身免疫性条件也经常报道[2]。此外,根据自身免疫的严重程度和开始方式,它们可能在某些疾病的医学方法中构成重大挑战,以及用于治疗潜在疾病的治疗疗法的可用性。例如,特应性皮炎(AD)是皮肤病学中通常遇到的皮肤病[2,3]。div> Dupilumab是一种批准用于中度至重度AD的生物药物[3]。但是,它与某些不利影响有关,在某些情况下可能会阻碍其实施[3-5]。这种情况在AD管理中有多相关?在2022年底,Bridgewood等人[4]使用世界卫生组织的全球药物循环数据库进行了系统的分析,以确定与2型帮助者T-Cell T-Cell T-Cell介导的不良反应和相关自动免疫的临床模式和自身免疫性疾病的频率和频率。已经确定,迄今为止,已经报道了与杜皮拉姆单抗有关的37,848例不良事件,皮肤,眼睛和肌肉骨骼系统是最常见的器官。已经确定肠炎(或12.6; 95%CI:6.54–24.47),血清神经性关节炎(OR 9.6; 95%CI:3.07–30.07),虹膜炎(OR 3.7; 3.7; 95%CI; 95%CI:1.88-7.55),以及1.45%coriasis(OR 1.4; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95%; 95%;下降顺序,与发生不良事件的发生最常见的条件。通过鉴定与这些反应的发生有关的特定途径,例如FG成纤维细胞受体(FGFR2)途径和某些microRNA,作者得出结论,该药物不会预防免疫介导的体液疾病,而是动态地偏向AD控制的其他途径[4]。通过基础研究实验试验,已经提出IL-4/IL-13轴在与IL-23/IL-17轴相关的肠炎的相互作用中起着一定作用[5]。IL-4和IL-13的表达和/或衰减与T细胞和其他促炎分子的存在有关。因此,尽管不精确,但自身免疫性表现的临床观察与组织学和免疫组织化学发现之间存在潜在的因果关系[5]。睡眠障碍在这些类型的报告中也经常被观察到不良事件,与对照组相比(出现睡眠不足的可能性高15倍)[6]。在针对这些反应的描述案例系列中,注意到
摘要:农药被广泛使用,导致人类持续接触农药,并可能对健康产生影响。一些与农业工作有关的接触与神经系统疾病有关。自 2000 年代以来,文献中对农药在中枢神经系统 (CNS) 肿瘤发生中的作用的假设进行了更详尽的记录。然而,儿童脑癌的病因仍然很大程度上未知。这项工作的主要目的是根据问卷调查和统计分析从突尼斯斯法克斯哈比卜·布尔吉巴医院中部神经外科住院患者收集的信息,评估农药暴露作为中枢神经系统肿瘤风险因素的潜在作用,这些患者在 2022 年 1 月 1 日至 2023 年 5 月 31 日期间住院。它还旨在通过气相色谱-质谱技术开发一种简单快速的分析方法,用于研究一些收集的人脑肿瘤组织中农药代谢物的痕迹,以进一步强调我们对农药暴露与脑肿瘤发展之间这种相关性的假设。选取有高风险暴露史的患者进行进一步分析。采用化学计量学方法来辨别病理组和对照组之间的内在差异,并通过鉴定导致这种差异的差异表达代谢物来确定有效分离。三个样本显示出农药代谢物的痕迹,这些代谢物大多在早期检测到。一名 10 岁儿童的组织病理学诊断为髓母细胞瘤,27 岁和 35 岁成人的组织病理学诊断为高级别胶质瘤。双变量分析(比值比 >1 和 P 值 <5%)证实了暴露病例患癌症的可能性很大。Cox 比例风险模型显示,50 岁以后的致癌风险是农药毒性的长期影响。我们的研究支持农药暴露与人类脑肿瘤发展风险之间的相关性,表明孕前农药暴露,以及可能的怀孕期间的暴露,与儿童脑肿瘤风险增加有关。这一假设在鉴定出以神经毒性著称的氨基甲酸酯类杀虫剂代谢物痕迹以及以致癌性著称的哒嗪酮、有机氯 (OCs)、三唑类杀菌剂和 N-亚硝基化合物等代谢物痕迹后得到了进一步证实。2D-OXYBLOT 分析证实了杀虫剂的神经毒性作用,可诱导中枢神经系统细胞氧化损伤。在应激降解研究中鉴定出肟代谢物,证实了涕灭威具有脑致癌性。揭示 OC 类“氮丙啶”代谢物可能更好地强调了在早期检测农药代谢物痕迹的理论。总体而言,我们的研究结果促使我们建议限制农药在住宅中的使用,并支持为实现这一目标而制定的公共卫生政策,我们需要在上市后对人类健康影响的监测中保持警惕。
ElenaFernándezTorres摘要结核病(TB)仍然是全球重大的健康挑战,由于多药耐药性结核分枝杆菌(MTB)的兴起而加剧。由于抗性机制而导致的现有药物的效率低下需要新颖的药物靶标和优化的药物输送系统。这项研究旨在使用CRISPR干扰(CRISPRI)筛查确定MTB中的必要药物靶标,并评估基于微晶纤维素(MCC)的配方效应以持续药物递送。使用DCAS9介导的转录抑制构建了一个基因组 - 宽CRISPRI文库,并使用qPCR和RNA测序(RNA-Seq)评估了基因敲低效率。使用肉汤稀释测定法和菌落形成单位(CFU)枚举评估了基因抑制对细菌存活和药物敏感性的影响。基于MCC的Isoniazid制剂是使用湿的颗粒方法开发的,并通过扫描电子显微镜(SEM),X射线衍射(XRD)和傅立叶变换红外光谱(FTIR)来表征。使用USP溶解设备II评估了体外药物释放曲线,并进行了统计分析,包括ANOVA和Pearson相关性,以确定重要的趋势。结果表明,高CRISPRI敲低效率与降低的细菌存活率相关(r = -0.78,p <0.0001),表明成功鉴定了基本基因。细菌存活与利福平MIC之间的正相关(r = 0.61)证实,敲低会影响药物敏感性。基于MCC的制剂显示在24小时内持续释放药物,在MCC药物释放和细菌存活之间存在很强的负相关(-0.68),证实了延长的抗菌活性。该研究得出结论,CRISPRI是结核病药物靶标识别的有力工具,而基于MCC的配方为持续药物递送提供了有希望的策略。未来的研究应在体内药代动力学,全基因组测序和先进的药物携带者中整合,以进一步优化结核病治疗策略。关键字:结核病,CRISPR干扰,结核分枝杆菌,基因敲低,细菌存活,微晶纤维素,耐药性,持续药物释放,药物释放,精确药物,精密医学引起的结核病(TB),由Mycobacterium witter(Mimabacterium witter)造成了1.超过100个全球的造成(Mimobacterium witter and Fresprim andim Million Millionb)(Mim Million Millionb),是一个1. Mimb)。每年死亡(Samukawa等,2022)[1]。耐多药(MDR-TB)和广泛的耐药性结核(XDR-TB)的出现增加了对新型治疗策略的迫切需求(Cheung等,2021)[3]。传统的药物发现方法由于细菌代谢,休眠机制和内在耐药性的复杂性而难以确定新的有效靶标(Rock等,2016)[2]。在响应中,CRISPR干扰(CRISPRI)技术已成为鉴定和验证细菌生存,耐药性和代谢脆弱性所需基因基因的革命性工具(Yan等,2022)4 []。CRISPRI利用催化死亡的CAS9(DCAS9)酶选择性地抑制基因表达而无需诱导双链断裂,从而在活细菌细胞中实现了高通量药物靶标筛查(McNeil等人,2021年)[3]。虽然CRISPRI已广泛用于癌症研究和细菌遗传学,但通过鉴定出新的可药物靶标和抗生素协同作用来增强结核病药物发现的潜力仍未得到充分激发(Choudhery等,2024)[5]。除了确定新药靶标外,改善药物输送系统对于增强治疗功效和患者依从性至关重要(Kalita等,2013)[6]。当前的结核病药物治疗方案很长(6-9个月),导致辍学率高,治疗不完全,