Trastuzumab deruxtecan (T-DXd) 是一种抗体-药物偶联物 (ADC),由人源化抗人表皮生长因子受体 2 (HER2) 单克隆抗体与拓扑异构酶 I 抑制剂细胞毒性有效载荷 (DXd) 共价连接而成。高药物抗体比 (8:1) 确保在 T-DXd 内化并随后裂解其四肽基接头后,将高浓度的 DXd 输送到目标肿瘤细胞。DXd 的膜通透性使其能够穿过细胞膜并可能对周围肿瘤细胞发挥抗肿瘤活性,而不管 HER2 表达如何。T-DXd 独特的作用机制反映在其对 HER2 阳性晚期乳腺癌患者(在大量接受过治疗的人群以及之前接受过紫杉烷和曲妥珠单抗治疗的人群)以及 HER2 低转移性乳腺癌的临床试验中的疗效上。因此,T-DXd 等 ADC 有可能改变转移性乳腺癌中针对 HER2 的治疗模式,最终包括辅助/新辅助治疗。
核酸疗法正在成为一类有前途的药物,在基因水平上为癌症提供独特的治疗选择。然而,核酸疗法的药物适用性受到其低稳定性、差的膜通透性和低生物利用度的根本限制,因此必须使用递送载体。已经开发了各种用于核酸疗法的递送载体。已建立的核酸递送系统 (NADS) 在体内的命运大大影响递送效率和治疗效果。NADS 的物理化学性质(例如大小、电荷、形状等)对于 NADS 与体内各种生物屏障的相互作用至关重要,从而决定了 NADS 在体内的命运。纳米颗粒 (NP) 尺寸是决定 NADS 的血液循环、分布、肿瘤积聚和细胞摄取的重要参数。本综述简要介绍了NADS在癌症治疗中的各种生物学屏障,重点讨论了运载载体的粒径对NADS在体内命运及其治疗效果的影响,为NADS的合理设计提供了新的见解。
在有丝分裂过程中拆除了保护和组织基因组的核包膜。在秀丽隐杆线虫合子中,父母原核的核包络崩溃(NEBD)在有丝分裂过程中是空间和节气调节的,以促进母体和父亲基因组的统一。核孔复合物(NPC)拆卸是NEBD的决定性步骤,对于核通透性至关重要。通过结合实时成像,生物化学和磷蛋白质组学,我们表明NPC拆卸是一个逐步的过程,它可以将类似polo的激酶1(PLK-1)(PLK-1) - 依赖性和独立步骤。plk-1靶向多个NPC子分类,包括细胞质丝,中央通道和内环。PLK-1被募集到并磷酸化几种多价接头核孔蛋白的内在无序区域(IDR)。值得注意的是,尽管磷脂在人和秀丽隐杆线虫核孔之间并不保守,但它们位于这两个物种的IDR中。我们的结果表明,靶向多价接头核孔的IDR是有丝分裂过程中NPC拆卸的进化保守的驱动器。
血管生成在肿瘤发育,增殖和转移中起着基本作用(1,2)。血管生成固有的分子途径为非小细胞肺癌(NSCLC)的有效疗法提供了几个靶标(1)。这些靶标包括血管内皮生长因子(VEGF),血小板衍生的生长因子(PDGF),成纤维细胞生长因子(FGF)及其相应的受体(2)。VEGF是众所周知的血管生成的关键调节剂,主要通过VEGF受体2(VEGFR2)促进血管结构发展,调节血管通透性和诱导血管泄漏的信号(3)。酪氨酸激酶抑制剂(TKI)通过与三磷酸腺苷(ATP)竞争激酶结构域的活性位点,抑制该途径中的多个受体(4)。PDGF途径通过其对周细胞和血管平滑肌细胞的影响在血管结构的发展和稳定中起作用(5)。FGF受体(FGFR)激酶激活信号通路,导致内皮细胞激活,周细胞的募集和血管平滑
轻度创伤性脑损伤 (TBI) 占 TBI 相关损伤的最大比例,部分 TBI 患者存在持续的病理生理和功能缺陷。在我们的重复性和轻度创伤性脑损伤 (rmTBI) 三重打击范例中,我们通过活体双光子激光扫描显微镜观察到 rmTBI 后 3 天,红细胞速度、微血管直径和白细胞滚动速度降低,导致神经血管解偶联。此外,我们的数据表明血脑屏障 (BBB) 通透性 (渗漏) 增加,rmTBI 后连接蛋白表达相应减少。rmTBI 后 3 天,线粒体耗氧率 (通过 Seahorse XFe24 测量) 也发生了改变,同时线粒体的裂变和融合动力学也受到破坏。总体而言,这些病理生理学发现与 rmTBI 后蛋白质精氨酸甲基转移酶 7 (PRMT7) 蛋白水平和活性降低相关。在这里,我们增加了体内 PRMT7 水平,以评估 rmTBI 后神经血管和线粒体的作用。使用
抗菌药物是治疗细菌感染必不可少的药物。然而,几十年来,抗生素在畜牧业、农业和临床环境中的使用给细菌物种带来了巨大的选择压力 (5)。抗菌药物只是细菌在地球上繁衍生息所必须克服的障碍之一;人类及其产品只代表了微生物生命史的一小部分。此外,新发现让我们相信,细菌不仅仅是它们自身适应成功的观察者。细菌的抗生素耐药性可以通过多种方式发展,包括由抗生素靶标突变引起的变化、细胞通透性和外排的变化以及耐药基因的水平转移 (6)。它们有利于动物的护理和从动物源中为人类生产有益健康的食品 (7)。本综述的主要目标是展示脂质体作为抗菌剂载体的优势,以及它们消除感染和战胜抗生素耐药性的能力 (5)。本综述讨论了旨在解决抗生素耐药性和延长抗生素使用寿命的新治疗选择,以及在多重耐药性日益增加的背景下的当前抗生素治疗。
简介 最引人注目的化疗形式之一是细胞毒药物。细胞毒药物可以说是一类不同的治疗剂。有趣的是,这种药物治疗癌症的主要方式是对快速分裂和生长的细胞产生毒性。1 作为一种化疗药物,阿霉素 (DOX,图 1 ) 是治疗早期和晚期乳腺癌的主要药物之一。然而,无论其有效性如何,它都会导致一系列不良的副作用,尤其是不可逆的心脏毒性和可逆的肾毒性;这些副作用导致了许多不同的 FDA 批准的载体的开发。DOX 的抗肿瘤作用小于或等于已批准的载 DOX 的纳米载体。这些载体通过增强血管通透性和滞留作用增加这些载体在肿瘤中的蓄积,从而改善癌症治疗。然而,现有的 DOX 药物递送制剂的一个重要问题是对表现出多药耐药性的肿瘤缺乏疗效。作为一种选择,由于含有 DOX 的 NP 被内吞并位于核周膜附近,细胞
简介:老年性黄斑变性 (AMD) 是发达国家 60 岁或以上人群不可逆失明的主要原因。目前,抑制血管生成和血管通透性的抗血管内皮生长因子 (VEGF) 疗法是唯一被证实可以提高视力和阻止疾病进展的治疗方法。抗 VEGF 疗法的治疗局限性包括成本高、玻璃体内反复注射、治疗上限以及尽管积极治疗,视力结果仍会恶化。因此,迫切需要研究其他靶点来解决这些局限性。目前正在研究的分子包括靶向 VEGF-C 和 VEGF-D、整合素、酪氨酸激酶抑制剂和 Tie2/血管生成素-2 通路。截至 2021 年 11 月 30 日,我们在 PubMed、Medline、Google Scholar 和相关数字平台上进行了文献检索,关键词如下:湿性黄斑变性、年龄相关性黄斑变性、治疗、VEGF-A、VEGF-C、VEGF-D、整合素、Tie2/Ang2 和酪氨酸激酶抑制剂。
显微镜的主题覆盖范围几乎是相同的,但是该教学大纲不需要讨论光和电子显微镜的相对优势。主题覆盖范围与细胞膜的角色和结构相同。覆盖分子在细胞膜上如何以及为什么在细胞膜上移动的理论是相同的,但是该课程提纲不需要对主动转运,植物细胞溶质电位的估计,温度和溶剂对细胞膜通透性的影响,内吞作用或内吞作用或本质内溶液的影响。该教学大纲列出了关于表面积与体积比和琼脂块扩散的其他实际活动,但该主题涵盖在剑桥Pre-U教学大纲第3.1节中。主题覆盖范围在细胞器的结构和功能上几乎相同。略有差异是该教学大纲不列出分泌囊泡,鞭毛和蛋白酶体,但确实列出了微管,微绒毛和质卵石。该教学大纲的实际结果关注植物和动物细胞,而9790则参考了从所有四个真核界的细胞中识别细胞的细胞器。
方法:一项单中心、前瞻性、生物标志物驱动的研究。符合条件的患者包括那些被诊断为肝转移性结肠直肠癌并计划接受一线奥沙利铂加 5-氟尿嘧啶或卡培他滨治疗的患者。患者接受配对血液采样和磁共振成像 (MRI) 检查,生物标志物与无进展生存期 (PFS) 和总生存期 (OS) 相关。结果:20 名患者被招募参与研究。数据显示,从治疗前到第 2 周期第 2 天,化疗显著降低了循环肿瘤细胞的数量以及 Ang1、Ang2、VEGF-A、VEGF-C 和 VEGF-D 的循环浓度。循环浓度的变化与 PFS 或 OS 无关。平均而言,从治疗前到第 2 周期第 2 天,MRI 灌注/通透性参数 K trans 在细胞毒性化疗后有所增加,并且这种增加与更差的 OS 相关(HR 1.099,95%CI 1.01 – 1.20,p = 0.025)。