摘要:斑马鱼是基础和翻译研究中最广泛采用的动物模型之一。斑马鱼的这种流行是由于几个优点,例如与人类基因组相似的高度,遗传和化学扰动的易感性,具有高繁殖力,透明且快速发展的胚胎的外部受精,以及相对较低的成本效率。尤其是人体半透明是斑马鱼的独特特征,它不能与其他脊椎动物生物充分获得。动物的独特光学清晰度和小尺寸使其成为光学调制和观察的成功模型。更重要的是,显微注射和高胚胎通透性的便利性易于使大小分子有效地递送到活动物中。最后,从一对动物获得的众多兄弟姐妹提供了大量重复和改进结果的统计分析。在这篇综述中,我们描述了基于各种策略的光化学工具的开发,这些分层以前所未有的时空分辨率控制生物学活性。我们还讨论了这些工具在斑马鱼中的应用,并强调了光化方法的当前挑战和未来的可能性,尤其是在单细胞水平上。
帕金森氏病(EP)是一种由多巴胺能神经元退化引起的慢性和进行性疾病,其主要特征是在中枢神经系统中存在α-苏蛋白或Lewy身体(CL)的α-苏蛋白神经内神经元细胞质内包含。 div>然而,近年来,近年来可以将肠道菌群的营养不良与EP的病理生理联系起来。 div>神经生物学的综述进步如何在肠道菌群中的失销如何发展和发展帕金森氏病的影响。 div>这项研究是一种描述性类型,基于通过科学信息搜索引擎(例如Google Scholar和DialNet,Science Direct,PubMed)等科学信息搜索引擎获得的书目来源的收集,审查和分析,可提供英语和西班牙语。 div>发现在EP患者中,促炎细菌的增加。 div>还发现,失去生物可以提高允许细菌毒素以及α-核蛋白的聚集的肠道通透性。 div>通过互动,肠道菌群的改变是帕金森氏病的一部分
在天然聚合物中,壳聚糖作为化疗药物的药物输送系统引起了人们的特别关注 (7)。壳聚糖源自几丁质的脱乙酰化过程,是一种用途广泛的氨基多糖聚合物,大量存在于节肢动物的外骨骼和真菌的细胞壁中。其独特的属性,包括高载药量、持续循环、多功能性、在肿瘤部位精确释放药物、减轻对健康细胞的毒性、良好的靶向能力、生物相容性、生物降解性、抗菌和抗肿瘤特性以及细胞膜通透性,使其成为一种有吸引力的选择 (8)。化学改性的壳聚糖衍生物已显示出令人鼓舞的结果,可有效输送治疗剂,同时减少副作用。此外,壳聚糖在肿瘤部位的积累可以增强对癌细胞的免疫反应,并阻止肿瘤的生长和扩散。因此,由于具有抗肿瘤和止血活性且毒性极小,壳聚糖被认为是一种安全且生物相容的生物医学应用工具。壳聚糖的活性氨基易于与功能团连接,增强了其作为生物聚合物的多功能性 (7)。
引言血小板是血块形成的关键组成部分和免疫反应的调节剂(1,2)。激活的血小板会促进炎症,同时循环静止的血小板限制了炎症并保持血管通透性(3-6)。骨髓(BM)巨核细胞(MK)是循环血小板的主要产生(7,8),尽管肺中MK的存在已描述了一个多世纪以上(9-11)。最近努力表征肺MK的努力已开始定义其独特的表型(12),并证明肺MK会促进血小板产生(13),并调节局部免疫反应(14、15)。对肺MK的功能和起源的更清晰的定义将扩大我们对MK在血管生物学中的作用的了解,并更好地了解健康和疾病中血小板异性的知识。虽然肺中的MKS构成血小板,但它们对总血小板池的相对贡献仍然存在争议,估计范围从7%到50%(10、13、16)。Lefrancais,Ortiz-Muñoz和合着者估计生成的血小板碎片数量
药物赋形剂(如P-糖蛋白抑制剂)也可以增加药物对肠膜的溶解度和亲和力,增强细胞细胞途径和摄取内吞take虫,并激活淋巴转运途径,从而增加口服药物的生物利用度。本综述旨在通过评估P-糖蛋白流出蛋白在渗透性和药代动力学研究中评估P-糖蛋白外排的元数据来审查和评估药物赋形剂作为P-糖蛋白通透性抑制剂的性能。综述结果是药物赋形剂,已证明是来自表面活性剂和聚合物基团的P-糖蛋白抑制剂的有效,分别是TPGS和Poloxamer 188。与常规配方相比,所有将药物赋形剂掺入P-gp抑制剂的纳米系统都在提高口服药物的渗透性和生物利用度方面均具有潜力。这些系统的有效性已通过体外(CACO-2细胞),Ex Vivo(Ever the ted肠囊),原位(SPIP)和体内(AUC)方法评估。
癌症是社会面临的严重健康问题,其中宫颈癌和前列腺癌的死亡率很高。原因之一是常规化疗和放疗伴随的耐药现象和副作用。这需要不断开发替代治疗方法并寻找具有抗癌潜力的新化合物。一个例子是喹茜林,它已测试其抗癌潜力。MTT 测试显示喹茜林对 Hela 和 DU145 细胞系具有细胞毒活性。形态分析显示细胞凋亡的典型核变化,这通过膜联蛋白 V/PE 测试、caspases 3/7 的激活和 Bcl-2 蛋白表达的抑制得到证实。证实了线粒体膜通透性增加和 ROS 生成。还观察到细胞迁移受到抑制、G0/G1 期受阻、DNA 受损细胞数量增加以及有丝分裂灾难标志物增加,即微核和多核化,包括存在异常有丝分裂图。同时,观察到自噬增加,用氯喹预孵育细胞会抑制这一过程,这导致喹茜素对测试细胞的细胞毒性增加。喹茜素具有基于细胞凋亡和其他类型细胞死亡的多向作用。
摘要:内皮细胞是覆盖在血管内表面的单细胞层。它维持血管稳态,调节血管张力和通透性,并发挥抗炎、抗氧化、抗增殖和抗血栓形成功能。当内皮细胞受到高血糖、高脂血症和神经激素失衡等有害刺激时,不同的生物学途径被激活,导致氧化应激、内皮功能障碍,脂肪因子、细胞因子、内皮素-1和成纤维细胞生长因子分泌增加,一氧化氮生成减少,最终导致完整性丧失。内皮功能障碍已成为代谢性血管损伤的标志,会对心脏代谢和舒张功能产生不利影响,并导致包括心力衰竭在内的心血管疾病的发展。已提出使用不同的内皮功能障碍生物标志物来预测心血管疾病,以识别微血管和大血管损伤以及动脉粥样硬化的发展,特别是在代谢紊乱中。内皮功能障碍在严重 COVID-19 和 SARS-CoV-2 感染后代谢异常患者的心血管并发症的发展中也起着重要作用。在本综述中,我们将讨论心脏代谢疾病中内皮功能失调的生物学机制以及临床实践中可用的和有前景的内皮功能障碍生物标志物。
20 多年前,ADC 首次进入肿瘤临床,2000 年 FDA 批准抗 CD33 吉妥珠单抗用于治疗急性髓系白血病患者。ADC 由单克隆抗体骨架通过接头与强效细胞毒性化疗有效载荷结合而成;因此,这些药物是通过静脉注射给药的。其作用机制的核心是抗体与癌细胞表面表达的蛋白质结合,受体-ADC 复合物进入癌细胞,随后在细胞内释放细胞毒素,同时不伤害正常细胞(Nat Rev Clin Oncol 2021;18:327)。通过这种 ADC 靶向方法,可以安全地以高出数倍的效力递送细胞毒性化疗,与非结合化疗相比,具有更高的抗肿瘤功效。这种细胞毒性机制可能触发免疫细胞的激活和抗体依赖性细胞的细胞毒性,从而可能引发长期免疫反应(Sci Transl Med 2015; 7:315)。靶标识别和对抗体 Fc 区、细胞毒性有效载荷、药物与抗体的比例、连接子稳定性和膜通透性的生物工程改造导致了新一代 ADC 的产生,随后被批准用于越来越多的
摘要:创伤性脑损伤 (TBI) 和创伤性脊髓损伤 (SCI) 是由于外部物理损伤导致中枢神经系统 (CNS) 受损而导致的。由 CNS 创伤导致的功能障碍取决于机械冲击的方式、严重程度和解剖位置以及组织的机械特性。虽然生物机械损伤是 CNS 创伤病理生理学的启动因素,但目前尚不清楚解剖负荷分布和由此产生的细胞反应。例如,主要反应阶段包括诸如膜对离子和其他分子的通透性增加等事件,这可能会引发复杂的信号级联,从而导致长期损伤和功能障碍。损伤参数与细胞变化和随后的缺陷之间的相关性可能会导致更精确的耐受标准并促进开发更好的防护装备。此外,对损伤生物力学的理解的进步对于体外和体内实验研究的开发和解释至关重要,并且可能通过确定损伤反应时间范围内的损伤机制来开发新的治疗方法。在这里,我们讨论了与中枢神经系统创伤生物力学相关的基本概念、用于实验模拟 TBI 和 SCI 的损伤模型,以及用于改善对主要损伤机制的当前理解的新型多层次方法。
摘要 在本综述中,我们概述了过去六年(2015-2021 年)与 ADME(吸收、分布、代谢和排泄)和毒性终点相关的机器学习驱动分类研究领域的最新趋势。该研究仅关注具有大型数据集(即超过一千种化合物)的分类模型。针对九个不同的目标进行了全面的文献检索和荟萃分析:hERG 介导的心脏毒性、血脑屏障穿透、通透性糖蛋白 (P-gp) 底物/抑制剂、细胞色素 P450 酶家族、急性口服毒性、致突变性、致癌性、呼吸毒性和刺激/腐蚀。最佳分类模型的比较旨在揭示机器学习算法和建模类型、端点特定性能、数据集大小和不同验证协议之间的差异。根据对数据的评估,我们可以说基于树的算法(仍然)占据主导地位,共识建模在药物安全性预测中正成为一种日益增长的趋势。尽管人们已经可以找到对 hERG 介导的心脏毒性和细胞色素 P450 酶家族同工酶表现出色的分类模型,但这些目标仍然是 ADMET 相关研究工作的核心。