。cc-by-nd 4.0国际许可证。是在预印本下提供的(未经同行评审的认证)是作者/资助者,他已授予Biorxiv的许可证,以在2025年2月14日发布的此版本中显示在版权所有的此版本中。 https://doi.org/10.1101/2025.02.12.12.636430 doi:Biorxiv Preprint
沉积单钠和焦磷酸钙(MSU和CPP)微晶体负责痛风和软骨钙化中的疼痛和复发性炎症。在这些病理学中,炎症反应是由于巨噬细胞的激活引起的,负责释放包括IL-1β在内的各种细胞因子。IL-1β的成熟是由多蛋白质NLRP3插度介导的。在这里,我们发现晶体通过晶体的激活和IL-1β的同时产生的激活取决于细胞体积通过激活OSMO敏感的LRRC8阴离子通道的调节。LRC8的药理抑制和遗传沉默消除了晶体在体外和晶体诱导的胞内肿块模型中的浮游性激活。MSU/CPP晶体暴露时LRRC8激活诱导ATP释放,P2Y受体的激活和NLRP3炎性流向膜体激活和IL-1β成熟所必需的细胞内钙升高。在关节晶体诱导的炎症的背景下,我们确定了LRRC8 OSMO敏感的阴离子Channels具有病理生理相关性的功能。
优化概率模型是统计中良好的领域。然而,它与生成模型的培训的联系在很大程度上仍然不足。在本文中,我们表明可以将时间变化的生成模型的演变投射到指数族的歧管上,自然会在生成模型的参数与概率模型的参数之间建立链接。然后,我们根据自然梯度下降方案将其投影在流形上移动。这种方法还使我们能够有效地近似KL差异的自然梯度,而无需依靠MCMC进行棘手的模型。此外,我们提出了该算法的粒子版本,该版本具有指数家族中任何参数模型的封闭形式更新规则。通过玩具和现实世界实验,我们验证了所提出的算法的有效性。
由量子噪声造成的一般量子统一操作员被复制并插入一个相干超级式通道中,超过两个路径在嘈杂的单位上跨越探测器,并由控制量子驱动。对探针控制量子对的关节状态上的超塑通道进行的转换实现进行了表征。然后对超座通道进行特定分析,以分析嘈杂单一的相位估计的基本计量学任务,并由Fisher信息,经典或Quanth评估。与常规估计技术进行了比较,并通过最近研究了具有无限因果关系的量子切换通道,该通道最近研究了相似的相位估计任务。在此处的分析中,第一个重要的观察结果是,尽管它从未直接与估计的单一估计的单一相互作用,但可以单独测量它以进行有效的估计,同时丢弃与单一相互作用的探针Qubit。此属性也带有开关通道,但不可访问的技术无法访问。在一般条件下,此处表征了控制量子标筒的最佳测量。第二个重要的观察结果是,噪声在将控制矩偶联到单位的耦合中起着至关重要的作用,并且即使使用完全去极化的噪声,控制量矩形在非常强的噪声下仍可以进行相位估计的操作,而常规估计和切换通道在这些条件下也不正常。结果扩展了对相干控制通道的能力的分析,该通道代表可利用量子信号和信息处理的新设备。
凹坑表面技术旨在通过涡流强化通道中的传热,同时保持水力损失的适度增长,该技术在热能工程中有着广泛的应用[1,2]。微电子领域对此也产生了一定的兴趣[3-5],而关于普朗特数对层流传热强化影响的研究发表得就更少了。具体来说,在综述[2]中提到了[6,7]项研究,其中讨论了变压器油在加热壁面上具有单排球形和椭圆形凹坑的微通道中的流动。研究发现,在一个加热到 30 ◦ C 的九段微通道(宽度为 2,高度为 0.5,以通道高度为单位)的壁上,在低速(雷诺数 Re = 308)变压器油流动的情况下,定位具有中等深度(0.2)和螺距为 1.5 的球形凹坑,可以促进涡流强化传热,并且与光滑通道的情况相比,该壁面的传热增加了约 2.5 倍,水力损失减少了 7%。与光滑通道的情况相比,具有相同斑点面积(宽度为 0.55,长度为 1.5,以底部凹坑斑点直径为单位)和相同深度的椭圆形凹坑可以使传热进一步增强 3.4 倍(即,总共增强了 8.5 倍),水力损失减少 2.1%。 [8] 中发现了具有稀疏单排倾斜槽的通道稳定段中层流气流的局部加速。形成剪切流中的最大纵向速度几乎是平面平行通道中最大流速的 1.5 倍。后来确定,热效率由冲洗通道上平均的相对总努塞尔特数指定
我们研究了矩形管道中压力驱动层流磁流体动力学流动的能量稳定性,该管道具有横向均匀磁场和电绝缘壁。对于足够强的场,层流速度分布具有均匀的核心和凸起的哈特曼和谢尔克利夫边界层,这些边界层位于垂直和平行于磁场的壁上。该问题通过横向流坐标中的切比雪夫多项式的双重展开进行离散化。临界雷诺数的线性特征值问题取决于流向波数、哈特曼数和纵横比。我们考虑了小纵横比和大纵横比的极限,以便与基于一维基流的稳定性模型进行比较。对于大纵横比,我们发现数值结果与基于准二维近似的结果具有良好的一致性。升力机制在零流向波数极限中占主导地位,并使管道中的临界雷诺数和哈特曼数呈线性依赖关系。小纵横比的管道结果收敛到 Orr 的原始能量稳定性结果,即对平面泊肃叶基流施加展向均匀扰动。我们还研究了特征模态的不同可能对称性以及管道几何中的纯流体动力学情况。
fi g u r e 1“绿色芽”模板,用于图2所示的分析。Y轴给出了PAS(百分比)的陆地或海洋生态系统的全球覆盖范围,其中量表的范围从0%到最大50%,这是最大全球PA覆盖率的最高普遍数字(Dinerstein等,2017,2019); X轴范围从低到高效率。“高”在有效性量表上表明,在严格的保护下(IUCN PA类别I和II),大多数PA都是最佳位置的,管理良好且资源充足。“低”表示大多数PA都位于低生物多样性价值的领域,具有较低的保护水平(Sensu IUCN PA类别V和VI),管理不善且融资不足。包围的“ C”用于表示PA覆盖范围的当前全局状态和估计有效性。数字“ 1”和“ 2”表示分别接近30%和50%PA覆盖率的情况,而不会克服影响当前有效性水平的障碍。数字“ 3”和“ 4”表示分别接近30%和50%PA覆盖率的情况,同时克服了当前PA有效性的障碍。增加颜色转变位置的不确定性是通过增加圆的模糊性来指示的。箭头在这里包括指导眼睛。其他信息:请参阅补充文本和图形和shoots_pa.xls(https://zenodo.org/recor d/7690684)。
在多输入多输出(MIMO)通信中,发射机和接收器之间多个通道的抽象表征和开发带来了经典通信系统的范式转移。围绕MIMO通信系统开发的技术不仅带来了前所未有的通信速率进步,而且还基本上提高了通过低错误率来衡量的通信的可靠性。我们开发了一个使用离散可变量子系统的MIMO量子通信的框架。我们提出了一个在多个通道之间结合噪声,损失和串扰的MIMO量子通道的通用模型。我们利用近似量子克隆在此通道设置上传输输入状态的不完美克隆。我们证明,与由于MIMO设置的多样性,传输多个不完美的克隆可以实现更好的沟通性能。我们还证明了实力和沟通速率之间的实际交易,并将其称为量子多样性多重交易(DMT),因为它与经典MIMO设置中众所周知的DMT相似。
表示学习被广泛用于观察数据的因果量(例如,有条件的平均治疗效应)。尽管现有的表示学习方法具有允许端到端学习的好处,但他们没有Neyman-Ottrol-ottrodenal学习者的理论特性,例如Double Ro-Busberness和Quasi-Oracle效率。此外,这种表示的学习方法通常采用诸如平衡之类的规范约束,甚至可能导致估计不一致。在本文中,我们提出了一类新型的Neyman-Ottrodonal学习者,以在代表水平上定义的因果数量,我们称之为或称为校友。我们的旅行者具有几个实际的优势:它们允许基于任何学习的表示形式对因果量进行一致的估计,同时提供了有利的理论属性,包括双重鲁棒性和准门的效率。在多个实验中,我们表明,在某些规律性条件下,我们的或学习者改善了现有的表示学习方法并实现最先进的绩效。据我们所知,我们的或学习者是第一批提供代表学习方法的统一框架,而Neyman-ottrol-ottrodenal学习者进行因果量估计。
没有量子电路可以将完全未知的单元门变成其相干控制版本。然而,实验中已经实现了对未知门的相干控制,利用了不同类型的初始资源。在这里,我们将这些实验实现的任务形式化,将其扩展到任意噪声信道的控制,以及涉及更高维控制系统的更一般类型的控制。对于相干控制的标准概念,我们确定了用于控制 d 维系统上任意量子信道的信息论资源:具体而言,该资源是一个扩展的量子信道,充当 (d + 1) 维系统的 d 维扇区上的原始信道。使用此资源,可以用通用电路架构构建任意受控通道。然后,我们将标准的控制概念扩展为更一般的概念,包括对可能具有不同输入和输出系统的多个通道的控制。最后,我们开发了一个理论框架,称为路由通道上的超级映射,它提供了将相干控制作为在扩展通道上执行的操作的紧凑表示,并强调了该操作对不同部门的作用方式。