模拟细胞微环境对于类器官和器官芯片研究非常重要。当前的课题之一是将类似血管的结构引入培养系统以改善细胞和组织功能,这值得在设计和系统考虑方面付出特别的努力。基于标准的设备配置,我们制作了一个类似血管的组件,可以轻松集成以进行细胞共培养。该组件由位于开放通道顶部的嵌入单层明胶纳米纤维组成。然后可以用带有模制腔、通道和标准 Luer 连接器的上部塑料板将其封闭。首先将人脐静脉内皮细胞 (HUVEC) 引入类似血管的通道中,并借助旋转装置进行三维培养。然后,施加流动进行细胞骨架重塑,得到致密且排列整齐的 HUVEC 层。随后,将人类胶质母细胞瘤细胞(U87)引入纤维层的上部,并施加流动以进行上部细胞层培养。我们的结果表明,在单层明胶纳米纤维的两侧均形成了 HUVEC 和 U87 细胞层,从而为各种共培养试验提供了可靠的支持。
几十年来,人们对 SOI 器件进行了广泛的研究,并将其应用于多种应用:具有厚硅膜(>60nm)的部分耗尽 SOI 器件用于 RF-SOI 应用 [1],而具有薄 SOI 膜(<10nm)的全耗尽 SOI 器件用于 RF、数字和更多 Moore 应用 [2-4]。已知 PD-SOI 器件中会发生浮体 (FB) 效应 [5-6],可以通过体接触消除 [7-8],而 FD-SOI 器件由于具有薄 SOI 膜,因此不受 FB 效应的影响。最近,已经提出了在薄 BOX 上具有相对较薄的薄膜(22nm)的 SOI 器件,以满足 3D 顺序积分的成像器应用要求 [9],其中 SOI 膜掺杂可用于 Vt 居中。本文的目的是确定这种 SOI 器件的操作,并提出相应的 TCAD 描述,考虑 SOI 膜掺杂。
纠错是构建量子计算机的关键步骤。量子系统会因退相干和噪声而产生误差。通过使用量子纠错,可以防止量子计算设备中的量子信息被破坏。人们为开发和研究量子纠错码做出了许多努力和改进。其中,拓扑码(如表面码 [1], [2])因其高阈值和局部性 [3] 而有望用于构建实用的量子计算机。色码 [4] 是另一种有前途的用于容错量子计算的拓扑量子纠错码。它们提供的阈值相对较好,略低于表面码 [5], [6], [7]。然而,与表面码不同,横向 Clifford 运算可以充当逻辑 Clifford 运算 [8]。量子擦除通道 [9], [10] 是简单的噪声模型,其中一些量子位被擦除,并且我们已知哪些量子位被擦除。当一个量子比特被擦除时,该量子比特被认为会受到随机选择的泡利误差的影响。了解哪些量子比特被擦除可能会使开发解码算法变得不那么复杂。最近,有人提出了在量子擦除信道上以线性时间对表面码进行最大似然 (ML) 解码 [11],它被用作表面码和色码的近线性时间解码算法的子程序 [6],通过将它们投影到表面码 [12]、[7] 上来纠正泡利误差和擦除。在本文中,我们证明了当一组被擦除的量子比特满足某个可修剪性条件时,在量子擦除信道上对色码进行线性时间 ML 解码是可能的,并提出了一种解码算法,我们称之为修剪解码。我们还提供了当不遵守可修剪性约束时如何使用修剪解码的方法。
氨基糖苷类和顺铂类药物因其在临床治疗各种疾病方面的高效性而被广泛使用,然而,它们的耳毒性副作用值得高度关注。这些药物可以通过特定的通道或转运体进入内耳,不仅影响毛细胞的存活,还会诱导活性氧的过量产生。目前,科学研究主要通过活性氧的下游干预来解决这一问题。然而,最近的研究表明,直接减少毛细胞对这些药物的吸收可以有效避免最初的损伤。特别是,可以通过分子动力学模拟详细探索药物与毛细胞之间的相互作用,以及相关通道和转运体的具体功能。结构生物学领域的迅速发展揭示了与药物吸收密切相关的各种通道和转运体的结构功能,如机电转导通道 (MET) 和有机阳离子转运体-2 等,为新的耳部保护策略提供了理论基础和潜在目标。因此,研究MET通道在耳毒性药物吸收中的调节作用至关重要,这是开发预防和治疗方法的关键。本综述旨在强调听觉毛细胞抑制耳毒性物质吸收的机制,探索如何针对这些通道和转运蛋白开发新的耳部保护方法,并为解决药物引起的耳毒性提供新的视角和策略。以这些通道和转运蛋白为靶点保护毛细胞的方法不仅拓宽了我们对耳毒性潜在机制的理解,而且可以促进听觉保护领域的进一步研究和进展。
提出的工作得到了国家研究,开发和创新办公室的研究赠款(赠款编号:134725,用于B.I.T.,134791,E.L.,137924,用于M.H.Ginop- 2.3.2-15-2016-00050,Ginop-2.3.3-15-2016-00004和Ginop-2.3.2.3.2-15-2016–00044)。B.I.T. 被授予匈牙利科学院的JánosBolyai研究奖学金。 M.R.,T.M.N。 和B.I.T. 得到了创新和技术部的新国家卓越计划[授予号授予编号,用于M.R.,UNKP-22-22-22-4-I-DE-87,用于T.M.M.M.M.M.N. T.V. 实验室的研究 得到了研究基金会的赠款-Flanders(FWO; G0B9520N),KU Leuven研究委员会(C2 -TRP),伊丽莎白女王伊丽莎白神经科学医学基金会和VIB。 该项目已从欧盟Horizon 2020研究与创新计划中获得资金,根据赠款协议号 739593。B.I.T.被授予匈牙利科学院的JánosBolyai研究奖学金。M.R.,T.M.N。 和B.I.T. 得到了创新和技术部的新国家卓越计划[授予号授予编号,用于M.R.,UNKP-22-22-22-4-I-DE-87,用于T.M.M.M.M.M.N. T.V. 实验室的研究 得到了研究基金会的赠款-Flanders(FWO; G0B9520N),KU Leuven研究委员会(C2 -TRP),伊丽莎白女王伊丽莎白神经科学医学基金会和VIB。 该项目已从欧盟Horizon 2020研究与创新计划中获得资金,根据赠款协议号 739593。M.R.,T.M.N。和B.I.T.得到了创新和技术部的新国家卓越计划[授予号授予编号,用于M.R.,UNKP-22-22-22-4-I-DE-87,用于T.M.M.M.M.M.N.T.V.得到了研究基金会的赠款-Flanders(FWO; G0B9520N),KU Leuven研究委员会(C2 -TRP),伊丽莎白女王伊丽莎白神经科学医学基金会和VIB。该项目已从欧盟Horizon 2020研究与创新计划中获得资金,根据赠款协议号739593。
媒体联系方式 ASKA Pharmaceutical Holdings Co., Ltd. 企业规划部 电话:+81-3-5484-8366 邮箱:kouhou@aska-pharma.co.jp
通道位置查找是确定背景通道集合中单个目标通道位置的任务。它有许多潜在的应用,包括量子传感、量子读取和量子光谱。特别是,它可以允许将简单的检测协议扩展到测量协议,例如,使用量子照明进行目标测距。在此类协议中使用量子态和纠缠已证明比最佳经典协议具有量子优势。在这里,我们考虑使用平均每个模式最多一个光子的源进行量子通道位置查找,使用离散变量形式。通过考虑各种量子源,通过推导性能界限可以证明可以实现量子增强。
从2025 - 26财年开始,该法案可能会减少司法部的收入和工作量。由于该法案的豁免权规定提出的民事案件较少,向司法部的各种现金资金申请费用将减少。同样,如果提交的民事案件较少,司法部审判法院的工作量也将减少。总体而言,这些影响预计将是最小的,并且不需要拨款改变。
亲爱的主席,作为马里兰州克拉克斯堡(Clarksburg)的长期居民,我敦促计划委员会将M83保留在总体规划中,并加快其批准进行建设。这条路线被克拉克斯堡社区的新家庭建筑商用作讨价还价的筹码。听到它不仅要预算,而且还计划从总体规划中删除它令人沮丧。令人惊讶的是,听到M83于1960年首次添加到总体规划中。只是常识,如果1960年的规划者认为这条路有帮助,那么这条路线是逾期的必要性,那是不费吹灰之力的。新道路将带来经济活动并改善我们的县收入。虽然Loudoun/Fairfax县/Tysons的发展非常快,并且随着经济活动而蓬勃发展,但Moco被困在25年前的地方。没有建立新的基础设施,也没有建立新的大型公司。除了ICC和Rio Crown的改进外,我是否错过了该县新事物?请考虑与联邦政府和州政府合作,通过在这条新的M83途径上包括WMATA红线扩展到克拉克斯堡,以资助建设。这是一个很好的机会,可以同时建造这两者,从而减少成本和给公众带来不便。将Metro和M83添加到Clarksburg将大大减少上Moco,Frederick县RT 355和I 270的交通。在基础设施改进上花费的资金花费了很高,通常很快就会恢复。为了热爱Moco,请保留M83并尽快预算施工。谢谢,Vamsi Motaparthy。
抽象的静止胰腺星状细胞(PSC)仅代表胰腺组织的比例很低,但是它们的激活导致基质重塑和与慢性胰腺炎和胰腺导管性性阴性性腺瘤瘤(PDAC)相关的病理学相关的纤维化(PDAC)。PSC激活可以通过各种应力诱导,包括酸中毒,生长因子(PDGF,TGFβ),缺氧,高压或与胰腺癌细胞的细胞间通信。激活的PSC靶向代表了一种有希望的治疗策略,但是关于PSC激活的基础的分子机制知之甚少。鉴定与慢性胰腺炎和PDAC中与脱木质有关的PSC激活的新生物标志物可能导致外分泌胰腺疾病治疗的新治疗靶标。 离子通道和转运蛋白是跨膜蛋白,包括包括PDAC在内的许多生理和病理过程。 他们众所周知,它们可以充当组织微环境的生物传感器,并且可以轻松地用于药物。 但是,它们在PSC激活中的作用尚未完全理解。 在这篇综述中,我们简要讨论了活化的PSC在胰腺炎症和病理纤维化中的作用(与慢性胰腺炎和PDAC有关),并在这些过程中描述了特定离子通道和转运蛋白(Ca 2+,K +,Na +和Cl)在这些过程中的作用。鉴定与慢性胰腺炎和PDAC中与脱木质有关的PSC激活的新生物标志物可能导致外分泌胰腺疾病治疗的新治疗靶标。离子通道和转运蛋白是跨膜蛋白,包括包括PDAC在内的许多生理和病理过程。他们众所周知,它们可以充当组织微环境的生物传感器,并且可以轻松地用于药物。但是,它们在PSC激活中的作用尚未完全理解。在这篇综述中,我们简要讨论了活化的PSC在胰腺炎症和病理纤维化中的作用(与慢性胰腺炎和PDAC有关),并在这些过程中描述了特定离子通道和转运蛋白(Ca 2+,K +,Na +和Cl)在这些过程中的作用。