在1 948年,克劳德·香农(Claude Shannon)介绍了他的概念,该概念是诺伯特·维纳(Norbert Wiener)的控制论的核心,即信息理论。香农的形式主义包括一个物理框架,即具有六个独特元素的通用通信系统。在此框架下,香农信息理论提供了两个特别有用的统计数据,渠道容量和信息。非常明显,数百个神经科学实验室随后报告了此类数字。但是,神经科学家如何(为什么)适应通信工程框架?令人惊讶的是,文献没有明确的答案。因此,首先回答“如何”,1 1 5的权威性审查论文,会议记录,书籍和书籍章节,以审查神经科学家对香农一般通信系统元素的特征。显然,许多神经科学家未能识别系统的元素。其他人仅确定了一些香农系统的元素。的确,在研究内部和整个研究中,可用的神经科学解释都表现出惊人的不一致。解释性范围暗示了香农的一般通信系统的数百个可能的神经元版本。明显缺乏确定的可信解释使神经科学的计算对通道容量和信息的计算毫无意义。这些因素中的每一个都促进了大量对香农系统元素的解释。最后,让我们不要忽略这些“信息不幸”对整个社会的影响。现在回答了Shannon的系统为什么曾经适应神经科学的原因,研究了神经科学文献的三个共同特征:无知观察者的作用,对神经元电压跨度火车的“解码”的推定,以及对信息,计算,计算,计算和机器等类似的追求。这与科学欺诈相同。
20 Chailloux,André; Scarpa,Giannicola。2014。并行重复免费纠缠游戏:简化和改进。arxiv。2011年21。近距离和明确的贝尔不平等违规行为。年度IEEE计算复杂性会议的会议记录。IEEE。 pp.157-166。 ISSN 1093-0159。 scopus(35)https://doi.org/10.1109/ccc.2011.30 22(1/1)Scarpa,Giannicola。 2010。 具有量子策略的网络游戏。 计算机科学,社会信息和电信工程研究所的讲义。 Springer Verlag。 36,pp.74-81。 ISSN 1867-8211。 scopus(3)https://doi.org/10.1007/978-3-642-11731-2_10 C.2。 祝贺1量子协议定理,几乎具有普通先验。 基础2023。 布里斯托尔大学。 2023。 2量子系统的观察者不能同意不同意。 uzzlex 2022。 Fira Barcelona,MatterInc.2022。 españa。 参与者-Póster。 恭喜。 3个具有量子策略的网络游戏。 QuantumComm2009。 2022。 意大利。 参与者-Ponencia Invitada/ Keynote。 4观察者之间的协议:物理原理? 第18届量子物理与逻辑国际会议。 2021。 polonia。 参与者-Ponencia Invitada/ Keynote。 5 Giannicola Scarpa。 icmat。 2019。 españa。 恭喜。IEEE。pp.157-166。ISSN 1093-0159。scopus(35)https://doi.org/10.1109/ccc.2011.30 22(1/1)Scarpa,Giannicola。2010。具有量子策略的网络游戏。计算机科学,社会信息和电信工程研究所的讲义。Springer Verlag。36,pp.74-81。ISSN 1867-8211。scopus(3)https://doi.org/10.1007/978-3-642-11731-2_10 C.2。祝贺1量子协议定理,几乎具有普通先验。基础2023。布里斯托尔大学。2023。2量子系统的观察者不能同意不同意。uzzlex 2022。Fira Barcelona,MatterInc.2022。españa。参与者-Póster。恭喜。3个具有量子策略的网络游戏。QuantumComm2009。2022。意大利。 参与者-Ponencia Invitada/ Keynote。 4观察者之间的协议:物理原理? 第18届量子物理与逻辑国际会议。 2021。 polonia。 参与者-Ponencia Invitada/ Keynote。 5 Giannicola Scarpa。 icmat。 2019。 españa。 恭喜。意大利。参与者-Ponencia Invitada/ Keynote。4观察者之间的协议:物理原理?第18届量子物理与逻辑国际会议。2021。polonia。参与者-Ponencia Invitada/ Keynote。5 Giannicola Scarpa。 icmat。 2019。 españa。 恭喜。5 Giannicola Scarpa。icmat。2019。españa。恭喜。PEPS零测试的计算复杂性。量子信息理论的研究术语。参与者-Ponencia Invitada/ Keynote。6 Giannicola Scarpa。 非信号游戏的完美策略。 AMS秋季东部会议。 ams。 2018。 estados unidos deamérica。 参与者-Ponencia Invitada/ Keynote。 恭喜。 7 Giannicola Scarpa。 在具有不完整信息的游戏中,信念不变的平衡。 量子决策理论研讨会2018。 PTE。 2018。 Hungría。 参与者-Ponencia Invitada/ Keynote。 恭喜。 8图,通信通道和非局部性:相互作用。 tu darmstadt。 2015。 Alemania。 参与者-Ponencia Invitada/ Keynote。 9量子计算简介。 tu darmstadt。 2015。 Alemania。 参与者-Ponencia Invitada/ Keynote。 10个多方零错误的经典通道与纠缠。 2015。 Reino Unido。 参与者-Ponencia Invitada/ Keynote。 11 Giannicola Scarpa。 通过超级信息成本和指数衰减的纠缠游戏并行重复。 ialp2014。 itu。 2014。 dinamarca。 参与者-Ponencia Invitada/ Keynote。 恭喜。 12个图,经典通道和非局部性:中欧量子信息处理。 2014。 cqt。6 Giannicola Scarpa。非信号游戏的完美策略。AMS秋季东部会议。ams。2018。estados unidos deamérica。参与者-Ponencia Invitada/ Keynote。恭喜。7 Giannicola Scarpa。 在具有不完整信息的游戏中,信念不变的平衡。 量子决策理论研讨会2018。 PTE。 2018。 Hungría。 参与者-Ponencia Invitada/ Keynote。 恭喜。 8图,通信通道和非局部性:相互作用。 tu darmstadt。 2015。 Alemania。 参与者-Ponencia Invitada/ Keynote。 9量子计算简介。 tu darmstadt。 2015。 Alemania。 参与者-Ponencia Invitada/ Keynote。 10个多方零错误的经典通道与纠缠。 2015。 Reino Unido。 参与者-Ponencia Invitada/ Keynote。 11 Giannicola Scarpa。 通过超级信息成本和指数衰减的纠缠游戏并行重复。 ialp2014。 itu。 2014。 dinamarca。 参与者-Ponencia Invitada/ Keynote。 恭喜。 12个图,经典通道和非局部性:中欧量子信息处理。 2014。 cqt。7 Giannicola Scarpa。在具有不完整信息的游戏中,信念不变的平衡。量子决策理论研讨会2018。PTE。2018。Hungría。 参与者-Ponencia Invitada/ Keynote。 恭喜。 8图,通信通道和非局部性:相互作用。 tu darmstadt。 2015。 Alemania。 参与者-Ponencia Invitada/ Keynote。 9量子计算简介。 tu darmstadt。 2015。 Alemania。 参与者-Ponencia Invitada/ Keynote。 10个多方零错误的经典通道与纠缠。 2015。 Reino Unido。 参与者-Ponencia Invitada/ Keynote。 11 Giannicola Scarpa。 通过超级信息成本和指数衰减的纠缠游戏并行重复。 ialp2014。 itu。 2014。 dinamarca。 参与者-Ponencia Invitada/ Keynote。 恭喜。 12个图,经典通道和非局部性:中欧量子信息处理。 2014。 cqt。Hungría。参与者-Ponencia Invitada/ Keynote。恭喜。8图,通信通道和非局部性:相互作用。tu darmstadt。2015。Alemania。 参与者-Ponencia Invitada/ Keynote。 9量子计算简介。 tu darmstadt。 2015。 Alemania。 参与者-Ponencia Invitada/ Keynote。 10个多方零错误的经典通道与纠缠。 2015。 Reino Unido。 参与者-Ponencia Invitada/ Keynote。 11 Giannicola Scarpa。 通过超级信息成本和指数衰减的纠缠游戏并行重复。 ialp2014。 itu。 2014。 dinamarca。 参与者-Ponencia Invitada/ Keynote。 恭喜。 12个图,经典通道和非局部性:中欧量子信息处理。 2014。 cqt。Alemania。参与者-Ponencia Invitada/ Keynote。9量子计算简介。tu darmstadt。2015。Alemania。 参与者-Ponencia Invitada/ Keynote。 10个多方零错误的经典通道与纠缠。 2015。 Reino Unido。 参与者-Ponencia Invitada/ Keynote。 11 Giannicola Scarpa。 通过超级信息成本和指数衰减的纠缠游戏并行重复。 ialp2014。 itu。 2014。 dinamarca。 参与者-Ponencia Invitada/ Keynote。 恭喜。 12个图,经典通道和非局部性:中欧量子信息处理。 2014。 cqt。Alemania。参与者-Ponencia Invitada/ Keynote。10个多方零错误的经典通道与纠缠。2015。Reino Unido。参与者-Ponencia Invitada/ Keynote。11 Giannicola Scarpa。 通过超级信息成本和指数衰减的纠缠游戏并行重复。 ialp2014。 itu。 2014。 dinamarca。 参与者-Ponencia Invitada/ Keynote。 恭喜。 12个图,经典通道和非局部性:中欧量子信息处理。 2014。 cqt。11 Giannicola Scarpa。通过超级信息成本和指数衰减的纠缠游戏并行重复。ialp2014。itu。2014。dinamarca。参与者-Ponencia Invitada/ Keynote。恭喜。12个图,经典通道和非局部性:中欧量子信息处理。2014。cqt。repúblicaCheca。参与者-Ponencia Invitada/ Keynote。非本地游戏的纠缠值13图理论界限。TQC2014。2014。Singapur。 参与者-Ponencia Invitada/ Keynote。 14改善与纠缠的沟通.. CWI阿姆斯特丹。 2013。 参与者-Ponencia Invitada/ Keynote。 15个广义的Kochen-Specker集,量子着色和纠缠辅助通道容量。信息研讨会的量子物理。 sjtu。 2012。 中国。 参与者-Ponencia Invitada/ Keynote。 16 Kochen-Specker集的概括将量子着色与纠缠辅助的通道容量联系起来。 AQIS2012。 2012。 中国。 参与者-Ponencia Invitada/ Keynote。 17量子计算简介。 计算。 套件。 2011。 Alemania。 参与者-Ponencia Invitada/ Keynote。 18近距离和明确的贝尔不平等。 QIP2011。 cqt。 2011。 Singapur。 参与者-Ponencia Invitada/ Keynote。 C.3。 proyectos olíneasderespejaciónSingapur。参与者-Ponencia Invitada/ Keynote。14改善与纠缠的沟通.. CWI阿姆斯特丹。2013。参与者-Ponencia Invitada/ Keynote。15个广义的Kochen-Specker集,量子着色和纠缠辅助通道容量。信息研讨会的量子物理。sjtu。2012。中国。 参与者-Ponencia Invitada/ Keynote。 16 Kochen-Specker集的概括将量子着色与纠缠辅助的通道容量联系起来。 AQIS2012。 2012。 中国。 参与者-Ponencia Invitada/ Keynote。 17量子计算简介。 计算。 套件。 2011。 Alemania。 参与者-Ponencia Invitada/ Keynote。 18近距离和明确的贝尔不平等。 QIP2011。 cqt。 2011。 Singapur。 参与者-Ponencia Invitada/ Keynote。 C.3。 proyectos olíneasderespejación中国。参与者-Ponencia Invitada/ Keynote。16 Kochen-Specker集的概括将量子着色与纠缠辅助的通道容量联系起来。AQIS2012。2012。中国。 参与者-Ponencia Invitada/ Keynote。 17量子计算简介。 计算。 套件。 2011。 Alemania。 参与者-Ponencia Invitada/ Keynote。 18近距离和明确的贝尔不平等。 QIP2011。 cqt。 2011。 Singapur。 参与者-Ponencia Invitada/ Keynote。 C.3。 proyectos olíneasderespejación中国。参与者-Ponencia Invitada/ Keynote。17量子计算简介。计算。套件。2011。Alemania。 参与者-Ponencia Invitada/ Keynote。 18近距离和明确的贝尔不平等。 QIP2011。 cqt。 2011。 Singapur。 参与者-Ponencia Invitada/ Keynote。 C.3。 proyectos olíneasderespejaciónAlemania。参与者-Ponencia Invitada/ Keynote。18近距离和明确的贝尔不平等。QIP2011。cqt。2011。Singapur。 参与者-Ponencia Invitada/ Keynote。 C.3。 proyectos olíneasderespejaciónSingapur。参与者-Ponencia Invitada/ Keynote。C.3。 proyectos olíneasderespejaciónC.3。proyectos olíneasderespejación
摘要。目的。信息传输速率 (ITR) 或有效比特率是一种流行且广泛使用的信息测量指标,尤其适用于基于 SSVEP 的脑机 (BCI) 接口。通过将速度和准确性结合为单值参数,该指标有助于评估和比较不同 BCI 社区中的各种目标识别算法。为了计算 ITR,通常假设输入分布均匀,并且通道模型过于简单,该模型无记忆、静止且本质上对称,字母大小离散。因此,为了准确描述性能并启发未来 BCI 设计的端到端设计,需要更彻底地检查和定义 ITR。方法。我们将视网膜膝状体视觉通路承载的共生通信介质建模为离散无记忆通道,并使用修改后的容量表达式重新定义 ITR。我们利用有向图的结果来表征由于新定义导致的转换统计不对称与 ITR 增益之间的关系,从而得出数据速率性能的潜在界限。主要结果。在两个著名的 SSVEP 数据集上,我们比较了两种尖端目标识别方法。结果表明,诱导的 DM 通道不对称对实际感知的 ITR 的影响大于输入分布的变化。此外,证明了新定义下的 ITR 增益与通道转换统计的不对称呈反比。进一步表明,单独的输入定制可以带来感知的 ITR 性能改进。最后,提出了一种算法来寻找二分类的容量,并进一步讨论了通过集成技术将这些结果扩展到多类情况。意义。我们期望我们的研究结果将有助于表征高度动态的 BCI 通道容量、性能阈值和改进的 BCI 刺激设计,以实现人脑与计算机系统之间更紧密的共生,同时确保有效利用底层通信资源。