通量和电荷定量定律,用于麦克斯韦类型的较高量规场 - 例如常见的电磁场(“ A场”),以及在字符串/M理论中考虑的B-,RR-和C场 - 通过编码它们的独奏行为,并通过指定单个Branes带来的离散费用(较高的单位单位官方官)来指定这些领域的非扰动完成,从而指定其范围内的单位行为。本文通过Chern-dold角色图来调查对通量和电荷定量化的一般(理性)理论理解,该特征被推广到非线性(自我输送)Bianchi身份,这些身份在较高维度的超级性超级强度理论中出现在d = 10,d = 10,d = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10中。世界卷影。
通量和电荷定量定律,用于麦克斯韦类型的较高量规场 - 例如常见的电磁场(“ A场”),以及在字符串/M理论中考虑的B-,RR-和C场 - 通过编码它们的独奏行为,并通过指定单个Branes带来的离散费用(较高的单位单位官方官)来指定这些领域的非扰动完成,从而指定其范围内的单位行为。本文通过Chern-dold角色图来调查对通量和电荷定量化的一般(理性)理论理解,该特征被推广到非线性(自我输送)Bianchi身份,这些身份在较高维度的超级性超级强度理论中出现在d = 10,d = 10,d = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10 = 10中。世界卷影。
一个黑盒子,管道和一个塑料容器似乎不可能在与气候变化的战斗中,但它们在泥炭地中似乎很重要。科学家阿拉斯泰尔·贝利斯(Alastair Baylis)和本·泰勒(Ben Taylor)上周邀请福克兰兹(Falklands)到萨里厨房(Saeri)厨房和花园,以查看助理室,并聊了聊相关项目。该项目由Defra(英国)和Falklands政府资助,并由Falklands Confartion与Saeri,英国生态与水文学中心以及英国的Antarctic调查一起领导。但是为什么首先需要这种设备的原因。有人解释说,泥炭土是重要且有价值的生态系统,其中包括其他好处,有可能通过隔离和存储大量碳来消除肝脏气候变化服务。但是,由于这种通常大的碳储存,它在降级时已经累积了,它们有可能为大气中的温室气体贡献大量的温室气体,因此增加了气候变化。该项目将考虑来自不同泥炭地栖息地的温室气体(GHG)排放。泰勒博士对企鹅新闻说:“数据将增加我们的规定,并为国家水平的碳排放量做出贡献。”数据还可以作为建立“福克兰群岛碳代码”的竞争,可以看到,这可以付出减少土地上温室气体排放的土地所有者的付款,例如通过栖息地修复。”就设备而言,该项目将同时使用通量塔
标准符合性合规性:(LV-D 2006/95/EC)CE,系统标准转换器系统:EN 61439,系统标准电池:EN 50178,EN 50272-2,EMC免疫系统:EN 61000-6-2,EN 61000-6-2,EMC排放系统:EN 61000-6-4,EN 61000-6-4,EN 605211 40,6052),IP20,IP20,IP20,IP20,IP20,IP20,IP20,IP20:(((eN 6052),IP20,(((eN 6052),IP20,(((ip20),(((((IP20))),((( 61000-6-5测试。可用的证书,测试地震。可用证书,符合风险类别:IV(基本设施)
优化酶在新型化学环境中起作用是合成生物学的核心目标,但通常会因崎,、膨胀的蛋白质搜索空间和昂贵的实验而阻碍优化。在这项工作中,我们提出了电信,这是一种将进化和实验数据融合到设计多种蛋白质变体文库的ML框架,并采用它来改善核酸酶酶的催化活性,从而降解在慢性伤口上积累的生物膜。在使用触觉和标准定向进化(DE)方法的多轮高通量实验(并行)之后,我们发现我们的方法发现,与DE相比,最高表现的酶变体明显更好,在发现多样化的高级活动性变体方面具有更好的命中率,甚至无法使用高强度的初始实验数据来设计高度,甚至能够设计出高度的初始实验数据。我们发布了一个55K核酸酶变体的数据集,这是迄今为止最广泛的基因型 - 表型酶活性景观之一,以推动ML引导设计的进一步进展。
摘要。基于清晰收获,现场制备,播种和中间稀疏的旋转林业通常是Fennoscan-dia的主要管理方法。然而,清除切割后对温室气体(GHG)排放的理解仍然有限,特别是在排水的泥炭地森林中。在这项研究中,我们报告了二氧化碳(CO 2),甲烷(CH 4)和一氧化二氮(N 2 O)的基于涡流的(基于EC的)净排放,该释放的北谷植物林中的肥沃盐水收获后1年1年。我们的结果表明,在年度上,该站点是净CO 2来源。CO 2排放主导着年度温室气体余额(23.3 T CO 2等式ha -1 yr -1,22.4-24.1 t co 2 eq。ha-1 yr-1,取决于EC间隙填充方法;总计82.0%),而n 2 o的作用(5.0 t co 2 eq。ha -1 yr -1,4.9-5.1 t co 2 eq。ha -1 yr -1; 17.6%)也很重要。该站点是一个弱的CH 4来源(0.1 T CO 2 eq。ha -1 yr -1,0.1-0.1 t co 2 eq。ha -1 yr -1; 0.4%)。开发了一个统计模型,以估计表面型CH 4和N 2 O排放。该模型基于空气温度,土壤水分和Ec ec ec ec toper toper typer的贡献。使用未占用的飞机(UAV)光谱成像和机器学习对表面类型进行了分类。我们的研究提供了有关CH 4和N 2 o频道如何受到基于表面上的模型,表面型特异性最高的CH 4散发出现在植物覆盖的沟渠和裸露的泥炭中,而表面则以活树,死木,垃圾,垃圾,暴露的泥炭为主导,是N 2 O发射的主要贡献者。
我们表明,从细菌菌落开始,在一次 Illumina NextSeq 2000 运行中可以对数千个质粒进行测序,并在第二天完成生物信息学分析。我们利用可扩展的模块化流程,包括菌落挑选、液体处理、DNA 测序和生物信息学分析。滚环扩增 (RCA) 或菌落直接 PCR 取代了传统的细菌培养和质粒纯化。集成自动标准化、一步式文库制备技术可在方便的 384 孔、可立即测定的配置(384 孔 x 16 板)中提供 6,144 个索引。我们与其他工作流程的基准比较表明,这种自动化流程将典型的合成生物学 DBTL 周期从几周缩短到几小时。
在本研究文章中,讨论了抛物线表面上的2D非牛顿Sutterby纳米流体流动的行为。在表面浮力驱动流动的边界区域发生,这是由于反应发生的相当大的温度差异发生在Sutterby Nanofluid和表面的催化剂之间。在抛物线表面上很容易看到的自由对流是通过在催化剂表面上的反应引发的,该反应模拟了一阶激活能。抛物线表面的应用是子弹,汽车帽子和空气工艺品的上部盖。在讨论流下进行数学建模,通过实施微生物的浓度,动量,质量和热量来建模。系统的管理方程是非线性PDE的形式。通过使用相似性变换,理事PDE的转换为非二维颂歌。通过内置函数MATLAB软件包(称为“ BVP4C”)在数值上求解了非尺寸ode的最终系统。图形表示显示了系统浓度,速度,微生物和系统的温度曲线的影响。在温度曲线中,我们检查了嗜热系数NT(0.1、0.5、1.0),prandtl Number pr(2.0、3.0、4.0)和Brownian运动变量NB的影响(0.1、0.3、0.5)。速度轮廓取决于非二维参数,即(Deborah Number de&Hartmann Number ha),发现这些数字(de,ha)会导致个人资料倒塌。此外,还计算出传质,皮肤摩擦和传热速率。该研究的目的是列举抛物线表面对热和质量通过生物相关的Sutterby Nanofluid流动的重要性。