1海洋环境科学的国家主要实验室,沿海和湿地生态系统的主要实验室(教育部),沿海和海洋管理研究所,环境与生态学院,Xiamen University,Xiamen University,Xiamen,Fujian,中国,2个国家观察和研究站中国藤本富州气象学科学,南中国海遥感,测量和地图合作应用技术创新中心,南中国海开发研究所,自然资源部,广东,广东,中国广东,中国广东,中国,尤里奇,尤里斯大学的大气层学院中国广东的朱海,南方海洋科学与工程实验室(Zhuhai),珠海,中国广东,8号生态学学院,太阳森大学,孙森大学,深圳,广东,中国,中国,9 nanjing
红树林在有机碳中高度富集。潮汐泵送在洪水潮期间将海水和氧气驱动到红树林,并在潮起潮潮期间释放富含碳的孔隙水。在这里,我们解决了半局部(洪水/退潮潮),Diel(日夜)和每周(Neap/spring潮汐)的孔道衍生的CO 2通量的驱动因素,并在两种红树林中进行了更新,并更新了其他网站早期观察结果的CO 2排放量的全球估计。潮汐泵控制P CO 2在两个红树林小溪中的变异性。P CO 2(2,585 - 6,856 µ ATM)和222 RN(2,315 - 6,159 dpm m -3)和pH(6.8 - 7.1)和溶解的氧气的最低值(1.7 - 3.7 mg l -1)的最低值是为了增强良好的促进水平。红树林孔隙水中的222 RN和P CO 2分别比地表水大4-15和38-41倍。p CO 2从高潮到低潮增加了50±30%,白天到黑夜的9±22%,从Neap到春季潮汐的57±5%,每小时,DIEL和每周时间尺度明显变化。将我们的新估计值与文献数据,全球孔水衍生的(16个地点)和水环(52个地点)CO 2分别在红树林中的通量相结合,将分别提高到45±12和41±10 tg c y-1。这些通量占净产量净生产的25%,是全球红树林中沉积物碳埋葬率的两倍。总的来说,我们的本地观察和全球汇编表明,孔水衍生的CO 2交换是红树林中CO 2的主要但通常没有被指责的来源。可以将毛孔衍生的CO 2发射到大气中,也可以侧向出口到海洋中,应包括在碳预算中以解决全球失衡。
通过实现遍及表观基因组的性状关联的发现,无花果DNA甲基化beadchip显着促进了种群规模的表观遗传学研究。在这里,我们设计,描述和实验验证了该技术的新迭代,即甲基化筛选阵列(MSA),以关注人类性状筛查和发现。此阵列利用了先前基于Infinium平台的整个表观基因组协会研究(EWAS)的大量数据。它结合了最新的单细胞和细胞类型 - 整个基因组甲基谱的知识。MSA经过设计,以实现超高样品吞吐量中表观遗传学特征关联的可扩展筛选。我们的设计涵盖了各种人类性状关联,包括具有遗传,细胞,环境和人口统计学变量以及人类疾病(例如遗传,神经退行性,心血管,感染性和免疫疾病)的人类疾病。我们全面评估了该阵列的可重复性,准确性和能力,用于细胞型反卷积和支持5-羟基甲基化分析。我们使用此平台的第一个图集数据发现了与人类表型相关的DNA修饰变化和遗传变异的复杂染色质和组织环境。
与温室或田野中的常规农作物种植相比,具有人造光的植物工厂(PFAL)在高效利用可用于耕种的空间,能源和资源方面具有优势。然而,据报道,很少有关于改善PFAL空间使用功效(SUE)在植物大豆毛豆生产中的空间使用功效(SUE)的研究。因此,开发一种以最小空间和能源需求的高生产率的环境控制方法是高优先级。这项研究的目的是(1)确定最佳的光合光子通量密度(PPFD)和光质量,以增强在营养生长阶段的雌芳族的SUE,并且(2)检查PPFD,光质量的影响,光质量及其对植物阶段的Edamame植物生长的相互作用。sue定义为在生长期间每立方体培养的农作物生物量。,我们检查了三种PPFD处理(300、500和700μmolM -2 S -1),共有三种色温LED灯(3,000、5,000和6,500 K),总共进行了九种处理。结果表明,在相同的轻质处理下,较高的PPFD导致所有器官的新鲜和干重,较高的茎长和较低的特定叶片面积。在同一PPFD处理下,蓝色(400–499 nm)与红色(600–699 nm)光子通量密度的高比例增加了植物的高度,但降低了预计的叶片面积。与300μmolM -2 s -1相比,分别在700μmolm -2 s -1中分别以3,000、5,000和6,500 K的形式增加了213、163和92%,分别为3,000、5,000和6,500 K。与3,000 K处理相比,在5,000和6,500 K处理中,SUE在700μmolM -2 S - 1中分别增加了34和23%。总而言之,在PFAL中,在营养生长阶段增加了700μmolm -2 s -1 ppfd和5,000 K色温的组合是增加毛虫的起诉。
使用概念模型(Cessi,1994; Cimatoribus等,2012)和完全占地的海洋气候模型(De Niet等,2007; Toom et al。,2012; Mulder等,2021)。这些研究的重要结果之一是(在这些模型中)的存在与可观察的数量有关(Rahmstorf,1996),现在通常称为AMOC稳定性(或制度)指标。该指标在文献中具有许多不同的符号,例如m ov(de Vries and Weber,2005)或F ov(Hawkins等,2011)。在这里,我们将遵循Weijer等人。(2019)并使用f ovs(f ovn)作为AMOC在大西洋盆地的35°S(60°N)的南部(北部)边界上携带的淡水运输(Dijkstra,2007; Huisman et al。,2010; Liu et al。,2017)。可用的观察结果(Bryden等,2011)表明,当今的AMOC将淡水从大西洋出口(F OVS <0)。众所周知,F ovs忽略了一些相关的过程(Gent,2018),但是如果人们接受f ovs是适当的指标,则AMOC基于其观察到的价值(Weijer等,2019)。
1 芝加哥大学詹姆斯弗兰克研究所,美国伊利诺伊州芝加哥 60637 2 芝加哥大学物理系,美国伊利诺伊州芝加哥 60637 3 斯坦福大学物理与应用物理系,美国加利福尼亚州斯坦福 94305 4 西北大学物理与天文系,美国伊利诺伊州埃文斯顿 60208 5 耶鲁大学耶鲁量子研究所,美国康涅狄格州纽黑文 06511 6 中国科学技术大学合肥国家微尺度物质科学研究中心和物理科学学院,中国合肥 230026 7 中国科学技术大学上海量子科学研究中心和中科院量子信息与量子物理卓越创新中心,上海 201315 8 普林斯顿大学物理系,美国新泽西州普林斯顿 08544 9 芝加哥大学普利兹克分子工程学院,美国伊利诺伊州芝加哥60637,美国
转化的生长因子-BETA(TGFβ)信号通路在建立免疫抑制性肿瘤微环境中起着至关重要的作用,使抗TGFβ剂成为癌症免疫疗法的重要领域。然而,针对上游细胞因子和受体的当前抗TGFβ药物的临床翻译仍然具有挑战性。因此,小分子抑制剂的发展特异性靶向TGFβ途径的下游主调节器SMAD4,将采取一种替代方法,具有明显的抗TGFβ信号传导的替代方法。在这项研究中,我们介绍了在超高通量筛选(UHTS)1536孔板格式中基于细胞裂解物的多路复用时间分辨荧光共振能量转移(TR-FRET)测定。该测定法可以同时监测SMAD4和SMAD3之间的蛋白质 - 蛋白质相互作用,以及SMADS及其共识DNA结合基序之间的蛋白质-DNA相互作用。多路复用的TR-FRET分析表现出高灵敏度,从而使单氨基酸分辨率下的Smad4-Smad3-DNA复合物进行了动态分析。此外,多路复用的UHTS分析证明了筛选小分子抑制剂的鲁棒性。通过对FDA批准的生物活性化合物库进行试验筛选,我们将gambogic Acid和Gambogenic Acodic鉴定为潜在的HIT化合物。这些概念验证的发现强调了我们优化的多重TR-FRET平台的大规模筛选的实用性,以发现针对SMAD4-SMAD3 – DNA复合物作为新型抗TGFβ信号剂的小分子抑制剂。
已经检测到并检查了超导体中捕获通量的现象,并检查了半个多世纪。[1]在II型超导体中,它更为明显,无处不在,通过考虑Bean的临界状态模型[2,3]和涡旋的固定,给出了一般的物理图片。最近,对超导体中捕获通量的兴趣转移到了潜在的应用中(参见例如参考。 [4]),但是这种现象作为超导性的实验证明之一的重要性得到了很好的理解。 [5]确实将捕获的通量测量用作高压下H 3 s超导性的实验证实之一。 [6]显示[6],与传统的DC磁化测量相比,捕获的通量磁化数据几乎不受钻石的背景信号的影响参考。[4]),但是这种现象作为超导性的实验证明之一的重要性得到了很好的理解。[5]确实将捕获的通量测量用作高压下H 3 s超导性的实验证实之一。[6]显示[6],与传统的DC磁化测量相比,捕获的通量磁化数据几乎不受钻石的背景信号的影响
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月20日。; https://doi.org/10.1101/2024.01.01.08.574731 doi:biorxiv Preprint