自然资源研究所芬兰(Luke),Latokartanonkaari 9,FI-00790赫尔辛基,芬兰B环境科学司,橡树岭国家实验室,贝塞尔山谷路1号,奥克山脉,田纳西州田纳西州37830,美国田纳西州37830在Zvolen,T.G。Masaryka 24, 96001 Zvolen, Slovakia e Forest Science and Technology Centre of Catalonia (CTFC), 25280 Solsona, Spain f Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country, 48940 Leioa, Spain g Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain h School of生物科学,阿伯丁大学。23 St Machar Drive,Aberdeen AB24 AB24,英国苏格兰,I Wageningen University and Research,Wageningen环境研究(WENR),DROEVENDAALSESTEEG,3,6708pb Wageningen,荷兰J Forestry and Forest Products and Forest Products and Forest Products Research Institute(Eagan)欧洲森林研究所,Yliopistokatu 6B,FI-80100,芬兰LAMSTERDAM LIFE与环境研究所(A-Life),Vrije Universiteit Amsterdam,1081 HV,阿姆斯特丹,阿姆斯特丹,荷兰MEARZ MEARCIES,VRIJE LIJEITITICITITICITITICITITICITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITIT23 St Machar Drive,Aberdeen AB24 AB24,英国苏格兰,I Wageningen University and Research,Wageningen环境研究(WENR),DROEVENDAALSESTEEG,3,6708pb Wageningen,荷兰J Forestry and Forest Products and Forest Products and Forest Products Research Institute(Eagan)欧洲森林研究所,Yliopistokatu 6B,FI-80100,芬兰LAMSTERDAM LIFE与环境研究所(A-Life),Vrije Universiteit Amsterdam,1081 HV,阿姆斯特丹,阿姆斯特丹,荷兰MEARZ MEARCIES,VRIJE LIJEITITICITITICITITICITITICITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITIT
代谢途径建模在药物设计中发挥着越来越重要的作用,因为它可以让我们更好地了解生物体代谢中潜在的调控和控制网络。然而,尽管该领域取得了快速进展,但途径建模对研究人员来说可能成为一场真正的噩梦,尤其是在实验数据很少或途径高度复杂的情况下。在这里,开发了三种不同的方法来模拟溶组织阿米巴原虫糖酵解的第二部分作为应用示例,并成功预测了最终的途径通量:一种包括详细的动力学信息(白框),另一种添加了调整项(灰框),最后一种使用人工神经网络方法(黑框)。之后,每个模型都用于代谢控制分析和通量控制系数确定。该途径的前两种酶被确定为在通量控制中发挥作用的关键酶。这项研究揭示了这三种方法对于在代谢途径建模领域根据现有数据构建合适模型的重要意义,对生物学家和建模者都有用。
1996 年 1 月 1 日之后发布的报告通常可通过 OSTI.GOV 免费获取。网站 www.osti.gov 公众可以从以下来源购买 1996 年 1 月 1 日之前制作的报告: 国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话 703-605-6000 (1-800-553-6847) TDD 703-487-4639 传真 703-605-6900 电子邮件 info@ntis.gov 网站 http://classic.ntis.gov/ 美国能源部 (DOE) 员工、DOE 承包商、能源技术数据交换代表和国际核信息系统代表可以从以下来源获取报告: 科学和技术信息办公室 PO Box 62 Oak Ridge, TN 37831 电话 865-576-8401 传真 865-576-5728 电子邮件 reports@osti.gov 网站 https://www.osti.gov/
海洋生物地球化学特性的抽象船上采样必然受到后勤和实际约束的限制。因此,在春季/夏季和相对可从主要港口访问的地区获得了大多数观察结果。这种限制可能会偏向于我们对地球系统重要组成部分的空间和季节变异性的概念理解。在这里,我们通过对生物地球化学模型进行了模拟真实,现实和随机抽样的次采样来研究采样偏差对碳导出通量全局估计的影响。我们发现,在全球外推出口通量的估计中,造船通量观测的稀疏性和“块状”特征都会产生误差。使用自主技术(例如生物地球化学网络)将通过增加样本量和降低观测空间分布的块状,将全局通量估计的不确定性降低到〜±3%。尽管如此,由于抽样模式际变化引起的不确定性,确定全球出口通量中气候变化驱动的趋势可能会受到阻碍。
摘要 高能中性原子(ENA)是研究日球层结构的重要工具。最近,人们观测到来自日球层上风区和下风区的 ENA 通量(能量约 55 keV)强度相似。这使得这些观测的作者假设日球层是气泡状而不是彗星状,这意味着它没有延伸的尾巴。我们研究了很宽能量范围(3 – 88 keV)内 ENA 通量的方向分布,包括来自 IBEX(星际边界探测器)、INCA(卡西尼号上的离子和中性相机)和 HSTOF(太阳和日球层探测器上的高能超热飞行时间传感器)的观测。一个基本要素是 Zank 提出的终端激波处的拾取离子(PUI)加速模型。我们采用最先进的全球日光层、星际中性气体密度和 PUI 分布模型。基于“彗星状”日光层模型的结果,其通量大小接近 IBEX、HSTOF 和部分 INCA 观测到的 ENA 通量(5.2 – 13.5 keV 能量通道除外)。我们发现,在高能量下,来自尾部的 ENA 通量占主导地位(与 HSTOF 一致,但与 INCA 不一致)。在低能量下,我们的彗星状模型从上风向和下风向产生强度相似的 ENA 通量 — 因此,这不再是气泡状日光层的有力论据。
摘要:我们强调了 M5 膜 sigma 模型中场内容的全局完成的必要性,类似于狄拉克的电荷/通量量化,并指出世界体积及其周围超重力背景下的超空间 Bianchi 恒等式将 M5 的通量量化定律限制为非阿贝尔上同调理论,合理等同于扭曲形式的同伦。为了清楚地阐明这一微妙之处,我们通过 M5“超嵌入”对世界体积 3 通量进行了简化的重新推导。最后,假设通量量化定律实际上是同伦的(“假设 H”),我们展示了这如何意味着在一般 M5 世界体积上存在 Skyrmion 类孤子,以及在异质 M 理论中“开放 M5 膜”边界上存在(阿贝尔)任意子孤子。
摘要 - 基于旅行场的通量泵送是一项有前途的技术,有可能在HTS磁铁的供应中产生突破性的创新,该磁铁提供了无接触式,低压和高电流替代电力电子励磁器和当前铅解决方案的替代方案。但是,他们的工程过程已证明提出了重大挑战。先前的研究在数值或实验上已经在经验上研究了单个设计参数对通量泵的产出和性能的影响,但它们只能提供不适合适当适当设计动作的定性关系。在这项研究中,我们提出了一种基于人工智能(AI)技术的新方法,以生成有效的通量泵设计。在此过程中采用了以前针对实验结果验证的有限元(Fe)模型,以提供通量泵的设计参数与优化问题的目标函数之间的关系,即在持续操作过程中的最大效率。Fe模型以函数的形式利用,该函数被馈入基于AI的优化算法,例如遗传算法和粒子群优化。已建立的过程提供了一种“系统”方法,用于设计可行有效的通量泵,用于在实际应用中无接触式通电HTS磁铁。索引项 - 直流超导磁铁,通量泵,HTS电源,HTS Dynamo,Fusion Magnet,设计优化
电场辅助纳米滤过用于PFOA去除PFOA,并使用电场辅助纳米过滤术,用于除外的PFOA去除,并具有出色的通量,选择性和破坏性的特殊通量,选择性和破坏性
1 亚琛工业大学 I. 物理研究所和 JARA-FAME,52056 亚琛,德国 2 中东技术大学 (METU) 物理系,06800 安卡拉,土耳其 3 格勒诺布尔阿尔卑斯大学、萨瓦大学勃朗峰分校、CNRS、LAPP-IN2P3,74000 安纳西,法国 4 北京航空航天大学 (BUAA),北京,100191,中国 5 中国科学院电工研究所,北京,100190,中国 6 中国科学院高能物理研究所,北京,100049,中国 7 中国科学院大学 (UCAS),北京,100049,中国 8 INFN Sezione di Bologna,40126 博洛尼亚,意大利 9 博洛尼亚大学,40126意大利博洛尼亚 10 麻省理工学院 (MIT),美国马萨诸塞州剑桥 02139 11 马里兰大学东西方空间科学中心,美国马里兰州帕克城 20742 12 马里兰大学 IPST,美国马里兰州帕克城 20742 13 CHEP,庆北国立大学,韩国大邱 41566 14 CNR – IROE,意大利佛罗伦萨 50125 15 欧洲核子研究中心 (CERN),瑞士日内瓦 1211 23 16 DPNC,日内瓦大学,瑞士日内瓦 1211 4 17 格勒诺布尔阿尔卑斯大学,CNRS,格勒诺布尔 INP,LPSC-IN2P3,法国格勒诺布尔 38000 18 格罗宁根大学卡普坦天文研究所,邮政信箱 800, 9700 AV 格罗宁根, 荷兰
我们应用 Boussinesq 方程的弱形式来表征非常精确的数值模拟中势能、动能和粘性能通量的平均值和标准差的缩放特性。研究了局部 Bolgiano-Oboukhov (BO) 长度,发现其值可能在整个域内发生数量级的变化,这与之前的结果一致。然后,我们研究了弱方程的逐尺度平均项,它们是 Kármán-Howarth-Monin 和 Yaglom 方程的推广。我们没有发现经典的 BO 图像,但发现了 BO 和 Kolmogorov 缩放混合的证据。特别是,所有能量通量都与温度的 BO 局部 Hölder 指数和速度的 Kolmogorov 41 兼容。这种行为可能与各向异性和对流的强烈异质性有关,这反映在 BO 局部尺度的广泛分布中。逐尺度分析还使我们能够将从其定义计算出的理论 BO 长度与通过弱分析获得的缩放经验提取的理论 BO 长度进行比较。可以观察到缩放,但范围有限。这项工作的关键结果是表明问题的局部弱公式分析对于表征波动特性非常有用。