本研究研究了脉冲CF 3 I/C 4 F 8 /Ar/O 2 电感耦合等离子体用于低k刻蚀,研究了C 4 F 8 /Ar/O 2 中添加CF 3 I对等离子体特性和低k材料刻蚀特性的影响。随着混合气体中CF 3 I/(CF 3 I + C 4 F 8 )比例的增加,等离子体中CF 3 自由基增多,CF 2 自由基减少,其中CF 3 自由基和CF 2 自由基分别与刻蚀和聚合有关。因此,SiCOH的刻蚀速率随CF 3 I比例的增加而增大。然而,当CF 3 I比例为0.5时,等离子体中的CF 2 /F通量比和聚合物层上的C/F比最高,因此对非晶碳层和光刻胶的刻蚀选择性在比例为0.5时最高。 SiCOH 损伤随 CF 3 I 比率的增加而减小,并且 SiCOH 损伤似乎非常低,特别是当 CF 3 I 比率≥0.5 时,Si–CH 3 键损失低、F 渗透低、表面粗糙度低。因此,与仅使用 C 4 F 8 /Ar/O 2 气体混合物相比,将 50% CF 3 I 混入 C 4 F 8 /Ar/O 2 气体混合物中不仅可以产生相对于掩模材料的高蚀刻选择性,而且还可能减少蚀刻损伤。
摘要。深空气候观测站 (DSCOVR) 上的美国国家标准与技术研究所先进辐射计 (NISTAR) 为地球大部分阳光照射面提供连续的全盘全球宽带辐照度测量。三个主动腔式辐射计测量来自地球阳光照射面的短波 (SW;0.2-4 µm)、总 (0.4-100 µm) 和近红外 (NIR;0.7-4 µm) 通道的总辐射能量。1 级 NISTAR 数据集提供滤波辐射度(辐照度与立体角之比)。要确定白天大气顶部 (TOA) 短波和长波辐射通量,NISTAR 测量的短波辐射度必须先未经滤波。使用为典型地球场景计算的光谱辐射数据库,为 NISTAR SW 和 NIR 通道开发了一种未过滤算法。然后,通过考虑地球反射和发射辐射的各向异性特性,将得到的未过滤 NISTAR 辐射转换为全盘白天 SW 和 LW 通量。使用从多个低地球轨道和地球静止卫星确定的场景标识以及使用云和地球辐射能量系统 (CERES) 收集的数据开发的角度分布模型 (ADM) 来确定各向异性因子。来自 NISTAR 的全球年白天平均 SW 通量比来自 CERES 的大约高 6%,并且两者都表现出强烈的昼夜变化,每日最大值和最小值差异高达 20 Wm − 2,具体取决于条件
微生物是驱动地球生物地球化学循环的齿轮。地球上微生物的代谢能力相当惊人,涵盖了广泛的能量产生途径。这种代谢多样性可能有助于减轻气候变化、污染物和其他环境损害对海洋和陆地生态系统的负面影响,这些损害已列入可持续发展目标 ( SDG )。传统的基于微生物的做法包括生物肥料、植物生长刺激剂和污染物降解剂,已经在使用中。然而,这些只是地球微生物未知的生化潜力的冰山一角。微生物对气候变化反应的生物学机制也在很大程度上是未知的。如果关键的生态系统服务(如养分循环和植物生长支持)无法再维持,微生物功能轨迹的新临界点可能会对环境产生有害影响。为了应对这些挑战,需要进行新的微生物学研究 1 。例如,可以利用微生物来降低大气中的二氧化碳 (CO 2 ) 和甲烷水平。可以利用土壤微生物将碳封存在矿物形式或死细胞生物质 (死物) 中。深根多年生草本植物可以提供将大气中的碳输送到土壤地下深处的载体,在那里碳可以作为根系分泌物被浸出,并作为栖息在根际的土壤微生物的基质。随后,土壤微生物还可以帮助将土壤碳保留在持久性有机物库中 2 。为了实现陆地生态系统的这些目标,需要进行更多的实验性田间操作。在海洋中,CO 2 通量比在陆地系统中更平衡。浮游植物吸收的大气碳大约与陆地上的碳一样多。
摘要 非弹性中子散射 (INS) 是研究固体振动动力学的非常强大的工具。田纳西州橡树岭 SNS 的 VISION 光谱仪在低能量传输下的总通量比其前代产品高出 100 倍,并且具有前所未有的灵敏度。我们将研究 VISION 在 INS 中现在所能达到的极限。从在几分钟内确定可发表质量的 INS 光谱(对于克量范围内的样品),测量毫克范围内样品的信号到直接测定吸附在功能化催化剂上的 2 mmol CO 2 的信号。最后,我们将讨论面临的主要挑战,特别是通过计算机建模和人工智能/机器学习等实现数据分析和解释的自动化方法。 关键词:非弹性中子散射,计算机建模,数据分析 1.简介 VISION 光谱仪位于田纳西州橡树岭散裂中子源 (SNS) 的光束线 16b (BL 16b) 上。VISION 非常独特,因为在大多数情况下,数据分析需要使用 DFT 建模和软件将这些计算机模型转换为可以直接与实验数据进行比较的合成光谱。VISION 是一种间接几何非弹性中子散射光谱仪,在同类仪器中拥有最高的通量和分辨率。主飞行路径距离环境温度下的解耦水慢化剂 16 米 [1]。次要飞行路径为 0.73 米。图 1 所示的次级光谱仪有一个分析器,该分析器由 347 个单晶热解石墨 (PG 002) 晶体(每个晶体面积为 1 cm2)的参数阵列组成,可将散射光束聚焦到 3 个氦管上的一小块区域内。分析器和探测器之间有一个切片铍块,楔块之间有镉片隔开。这些铍滤光片可消除晶体分析器不需要的𝜆/𝑛 反射,起到旁路滤光片的作用。总能量传输范围为 -2 meV 至 1000 meV,并跨越弹性线。对于 5 meV 以上的能量传输,这种仪器的仪器分辨率几乎是能量传输的一小部分 [2]:∆𝜔𝜔 ⁄ ~1.5% (1) 在弹性线上,分辨率为 120 µeV。