本研究提出了一种用于通风预热/预冷的 PCM 增强通风窗 (PCMVW) 系统,以节省建筑能源。它被设计成使用不同控制策略的夏季夜间制冷应用和冬季太阳能存储应用。建立了 PCMVW 的 EnergyPlus 模型来研究控制策略。接下来,进行了全尺寸实验来研究 PCMVW 的工作原理并验证该模型。利用经过验证的模型,将 PCMVW 的热性能和能量性能与其他 2 个通风系统进行了比较,结果表明 PCMVW 可以大大降低夏季和冬季应用的制冷/供暖能源需求。最后,本文提出了丹麦气候条件下住宅应用的控制策略。针对夏季夜间制冷应用开发的控制策略是使用玻璃间反射遮阳,直接从 PCM 热交换器向房间通风,同时应用 VW 自冷进行通风预冷模式,并使用 VW 中的空气加热房间以防止房间过冷。针对冬季太阳能储能应用开发的控制策略是使用玻璃间吸收百叶窗,利用 VW 中的热空气,并通过自冷和旁路通风冷却 VW,以防止房间过热。与原始的夏季和冬季控制策略相比,采用开发的控制策略,建筑节能分别高达 62.3% 和 9.4%。© 2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
被动式底板通风系统依靠风效应、热效应和压力差来诱导气流。这种气流将可能积聚在建筑物下方的污染蒸汽通过通风口排入大气。自然气流产生的通风量和被动屏障下方产生的蒸汽浓度取决于场地特定条件以及通风材料或底板对气流的阻力。被动通风系统最容易在建筑物施工前安装。虽然已经为现有结构设计了有效的被动通风系统,但其有效性取决于是否存在可渗透的底板层以及安装足够的通风输送网络的能力以及充分密封的楼板。现有结构的被动通风通常受到底板材料的渗透性和缺乏穿孔管或通风条输送系统的限制。因此,被动通风在新建建筑中最常用。在新建建筑中,排出底板土壤气体的典型方法是使用穿孔通风网络,该网络由管道或低型通风口组成,这些管道或通风口位于底板下方,并将蒸汽引导至位于中心的集气箱或管道集管。另一种有效的底板通风选项是通风地板空隙空间系统 (VSS);通风地板空隙空间系统 (VSS) 技术信息表中提供了 VSS 的详细信息。
用于实验室引擎盖排气管的火包装包裹,所有实验室罩管道排气管被认为是危险的,这是由于由代码定义的化学物质的健康类别。用代码安装了火灾阻尼器,但由于排气的危险性质而被禁止,允许使用燃料包裹。 请参阅U-M规格第220719节的机械系统绝缘材料,以了解消防包装产品的要求。 安装要求将根据通过建筑物的排气管路由而有所不同。 记录的工程师应与UM环境健康与安全协调,以逐项项目审查拟议的安装。 应保护暴露的火包裹绝缘材料免受物理损害,以确保保持绝缘的完整性。 可能需要进行隔热材料的其他外套或其他保护手段才能在管道运行的斑点区域中完成此操作,但整个系统可能不需要。 一个示例申请包括但不限于通过看门人的壁橱垂直路由的火管,环境服务可能会损坏使用MOP,桶,购物车等损坏绝缘的隔热材料。 此外,在其他非实验室危险排气应用中可能会考虑或需要使用火包,但是在发布竞标文件之前,需要对U-M设计团队以及U-M环境健康与安全进行审查。 排气风扇允许使用燃料包裹。请参阅U-M规格第220719节的机械系统绝缘材料,以了解消防包装产品的要求。安装要求将根据通过建筑物的排气管路由而有所不同。记录的工程师应与UM环境健康与安全协调,以逐项项目审查拟议的安装。应保护暴露的火包裹绝缘材料免受物理损害,以确保保持绝缘的完整性。可能需要进行隔热材料的其他外套或其他保护手段才能在管道运行的斑点区域中完成此操作,但整个系统可能不需要。一个示例申请包括但不限于通过看门人的壁橱垂直路由的火管,环境服务可能会损坏使用MOP,桶,购物车等损坏绝缘的隔热材料。此外,在其他非实验室危险排气应用中可能会考虑或需要使用火包,但是在发布竞标文件之前,需要对U-M设计团队以及U-M环境健康与安全进行审查。排气风扇
《城市法典》第14A-10-1003条授权建筑专员批准遵守芝加哥建筑法规规定的替代方法,即芝加哥建筑法规并非特别禁止芝加哥建筑代码所禁止的替代设计,并符合芝加哥建筑法规的意图,并在构建的一定构建中构建了一个规定,而不是在芝加哥建筑法规中,并且是构建的。芝加哥建筑法规的目的是“确定最低要求,通过结构强度,出口设施的手段,稳定,卫生,适用,能源和能源保存,能源保存以及对生命,爆炸,爆炸和其他危害的危害以及紧急情况下的紧急情况和紧急情况下的机构的安全和财产的安全,提供合理水平的安全性,公共卫生和一般福利。芝加哥机械法规的目的(《市政法典》第18-28章)是“通过规范和控制机械系统的设计,构建,安装,位置,操作和维护或使用机械系统的设计,安装,安装,安装,安装,安装,位置,操作和维护或使用机械系统的设计,安装,安装,安装,安装,安装,构建,安装质量和使用机械系统,为维护生命或肢体,健康,财产和公共福利提供最低标准。”芝加哥建筑法规和芝加哥机械代码都表明,非透视住宅单元(房屋和公寓)的通风均应通过自然手段(通常为可操作的窗户)提供。
Khristina Maksudovna Vafaeva 1,2 , Denis Fedorovich Karpov 3 , Mikhail Vasilyevich Pavlov 4 , Namani Srinivas 5 , Wamika Goyal 6 , Gaurav Singh Negi 7 , Sakshi Sobti 8 , Rajireddy Soujnya 9 , Deepak Kumar Tiwari 10 1 Research Engineer, Peter the Great俄罗斯圣彼得堡的圣彼得堡理工学院2号研究与发展部,可爱的专业大学,Phagwara,Punjab,旁遮普邦,印度3热,天然气和供水系,Vologda州立大学,Vologda,Vologda,Vologda,Vologda,Heat,Gas and Water Supply Supply Suppliate Suppliant,Vologda State University,Vologda,Vologda,Vologda,Vologda Federation 5 Chilkur(VIL),Moinabad(M),Ranga Reddy(Dist),Hyderabad,500075,印度Telangana,印度。6 Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140417, Punjab, India 7 Uttaranchal University, Dehradun - 248007, India 8 Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh-174103 India 9 Department of CSE, GRIET, Bachupally, Hyderabad, Telangana, India.10,Mathura-281406 GLA大学土木工程系(U.P. ) ),印度对应的电子邮件:vafaeva.khm@gmail.com10,Mathura-281406 GLA大学土木工程系(U.P.),印度对应的电子邮件:vafaeva.khm@gmail.com
除非明确书面确认,否则本文中的信息和技术数据(统称“数据”)不具有约束力。数据既不构成任何明示、暗示或保证的特性,也不构成保证的特性或保证的耐用性。所有数据均可能修改。适用 Georg Fischer Piping Systems 的一般销售条款和条件。 10/2024-A © Georg Fischer Piping Systems Ltd,8201 Schaffhausen/Switzerland 电话 +41 52 631 11 11 • www.gfps.com • 电子邮件:info.ps@georgfischer.com
环境健康与安全 (EHS) 通过安全评估和实验室检查满足教职员工和学生的安全需求。制定并传达实验室和通风柜使用协议。进行实验室设计和事故调查风险评估。提供通风柜使用培训援助。EHS 办公室还将定期对通风柜进行调查,以确保气流符合要求。设施部响应有关通风柜操作的服务请求。完成通风柜和通风柜系统的日常维护维修。在安装任何通风柜之前寻求 EHS 办公室的建议和批准。首席研究员 (PI) 通过监控人员是否遵守程序以及实验室设备是否正常运行来维护实验室内用户的安全;向设施部请求维修工单以解决故障系统。维护实验室中使用的化学品和化学卫生计划的准确和最新信息。确保其员工接受了适当的通风柜使用培训。所有通风柜用户均遵守 EHS、其主管和化学卫生计划、本计划以及所有其他相关 SOP/安全计划规定的所有安全程序。参加所有必需的安全培训课程。不使用未通过认证的通风柜。不要以非专门设计的方式使用通风柜。向 PI 或主管报告运行不正常、事故、不健康和不安全状况的通风柜。
,qwhuqdo 0hpru \ *%%xlow lq:l)l 7hpshudwxuh 6hqvru%uljkwqhvv 6hqvru([whuqdo 6HQVRU /RFDO .H \ 2shudwlrq(pehgghg&06 86%3OD \ 3od \ /rfdo 1r 6ljqdo,pdjh&xvwlrq] dlo ryhu&rqwhqw 6 \ qf 56& /rfdo 1hwzrun 6FUHQ 6KDUH 3OD \ YLD 85/ 6FUHQ 5RWDWLRQ([WHUQDO,QSXW 5RWDWLQ 3.3 3%3%3 7loh 6Hwlq 0d [ 6hwlqj'dorqlqj 6103&rqwuro 0dqdjhu 30 0rgh 6pduw(qhuj \ 6dylqJ:dnh rq /$$ 1&uhvwurq,qpfr&psdsdssssssssssssssdddwlelw \%frq +'0,&(6,6,6,6HWWWlQJ ZHE57&< /div>&< /div>&< /div>&< /div>&< /div>&< /div>&< /div>&< /div>
我们开发了一个机器学习(ML)框架,以预测接受MV的ICU患者的医院死亡率。使用MIMIC-III数据库,我们通过ICD-9代码确定了25,202名合格患者。我们采用了向后消除和套索方法,根据临床见解和文献选择了32个功能。数据预处理包括消除超过90%丢失数据的列,并为其余缺失值使用平均插补。为解决阶级失衡,我们使用了合成的少数群体过度采样技术(SMOTE)。我们使用70/30火车 - 策略分开评估了几种ML模型,包括Catboost,XGBOOST,DECOMAL TROED,随机森林,支持向量机(SVM),K-Nearest邻居(KNN)和Logistic回归。在准确性,精度,召回,F1得分,AUROC指标和校准图方面,选择了Catboost模型的出色性能。
•目标是估计墙壁上的对流传热系数。•均匀排气气体流入速度(V JET)和温度(T射流)的2-D可压缩流量模拟,且温度(t射流)具有恒定温度壁条件1的狭窄通道。•K -W剪切压力运输(SST)兰斯2型模型2。•用DNS结果验证了模拟3。•热失控模型LIM1TR(使用1-D热失控的锂离子建模)用于研究由于排气气体4引起的液化液中热失控启动的潜力。
