这项比较研究的主要发现是,Dymola被证明是具有最佳速度性能的工具,只需要0.25秒才能执行24小时模拟和288秒才能执行10年的模拟。在易用性方面,Amesim是最易于用户友好的,具有简单的用户界面,平滑的工作流程和清晰的文档。在特征和互操作性方面,Sim-ulink具有与MATLAB环境紧密相连的很大优势。对于Simscape而言,其速度和准确性性能是最差的,但由于提供了多物理组合,因此其速度和准确性性能最为差。
LM161、LM261、LM361 高速差分比较器概述 LM161、LM261、LM361 是一款超高速差分输入、互补 TTL 输出电压比较器,其特性优于 SE529、NE529,可作为后者的引脚对引脚替代品。该器件已针对更高的速度性能和更低的输入失调电压进行了优化。通常,对于 5 mV 至 500 mV 的过驱动变化,延迟变化仅为 3 ns。它可由运算放大器电源供电(例如 15V)。提供具有最大偏移的互补输出。应用包括磁盘文件系统中的高速模拟数字转换器和过零检测器。
FPGA 设计的一个关键方面是其布线架构,它包括用于互连器件逻辑块的资源。在早期的 FPGA [1] 中,互连主要由跨越一个逻辑块长度或宽度的短线段组成。可以通过可编程布线开关将两个或多个短线段连接在一起来形成较长的线段。虽然这种方法可以很好地利用线段,因为没有可能浪费在短连接上的长线段,但要求长连接通过多个串联开关会严重影响速度性能。这是因为基于 SRAM 的 FPGA 通常使用传输晶体管来实现布线开关,而这种开关具有很大的串联电阻和寄生电容。为了解决这些问题,最近提出了一种用于互连的布线开关,用于将两个或多个短线段连接在一起的布线开关。
正如 IDC 一直重申的那样,通信服务提供商 (comms SP)、有线 MSO、云超大规模提供商和技术供应商之间的连接性不断发展,这表明连接的端点仍将是一个移动目标。它将永远与企业 IT 战略保持一致,持续改进会影响业务敏捷性、提高业务灵活性,并允许组织随着市场或业务条件的变化而适应变化。5G 网络现已普及,但不可否认的是,具有太比特速度性能的 6G 网络已经被炒作并即将问世。低地球轨道 (LEO) 卫星技术有望为缺乏蜂窝或有线连接选项的偏远和农村地区带来高速连接,并增强连接弹性。人工智能、云连接、网络安全、应用程序可视性和性能管理都是实现敏捷和连接 (RACE) 路线图的必然组成部分。这些技术都将成为组织在如何管理复杂性以及哪家服务或技术提供商将成为帮助他们实现这一目标的战略合作伙伴的决策过程中的转折点。
I。在超短路通道CMOS节点中,TDDB仍然是关键的可靠性问题,并保证了速度性能和低消耗要求。即使状态应力通常以比州立应力较小的速率降解设备,在毫米波域中RF操作下HBD的限制因素也可能成为毫米波域(5G)[1-3]的限制因素,其中通常相对于用于逻辑应用的电源电压V DD通常可以增加一倍。因此,一旦生成了局部缺陷的临界密度,设备参数漂移可能与软崩溃的相关性显着,可能会触发硬性崩溃到栅极驱动器区域。许多论文从口气压力期间的界面损伤的横向分析中讨论了峰值降解发生在闸门边缘之外。崩溃点发生在间隔区域,并与峰界面损伤相处[4-5]。尽管发现了BD后的离子分解机制,排水管和闸门泄漏电流已达成合理的共识,但发现在排水边缘[6-8]中产生了介电堆栈中的渗透路径。
焊接过程产生的图像噪声(例如弧光,飞溅和烟雾)给基于激光视觉传感器的焊接机器人带来了巨大的挑战,可以定位焊接接缝并准确地进行自动焊接。当前,基于深度学习的方法超过了灵活性和鲁棒性的传统方法。但是,它们的重大计算成本导致与自动焊接的实时要求不匹配。在本文中,我们对卷积神经网络(CNN)和变压器的有效混合体系结构(称为动态挤压网络(DSNET))进行实时焊接接缝分段。更准确地说,开发了一个轻巧的分割框架,以充分利用变压器结构的优势,而无需显着增加计算开销。在这方面,旨在提高其功能多样性的高效编码器已被设计并导致了编码性能的大幅改进。此外,我们提出了一个插件轻巧的注意模块,该模块通过利用焊接接缝数据的统计信息并引入线性先验来产生更有效的注意力权重。使用NVIDIA GTX 1050TI对焊缝图像进行广泛的实验表明,与基线方法Transunet相比,我们的方法将参数的数量减少了54倍,将计算复杂性降低了34倍,并将推理速度提高33倍。dsnet可实现较高的准确性(78.01%IOU,87.64%骰子)和速度性能(100 fps),其模型复杂性和计算负担较低。该代码可在https://github.com/hackerschen/dsnet上找到。
在保证速度性能和低功耗要求的超短通道 CMOS 节点中,TDDB 仍然是一个关键的可靠性问题。在交流射频信号操作期间,“关断状态”与“导通状态”模式依次发生,从低频(kHz)到极高频范围(GHz)[1-2]。即使“关断状态”应力通常以比“导通状态”应力更小的速率降低器件性能,但它可能成为器件在射频域和毫米波应用中运行的限制因素,在毫米波应用中,电源电压 V DD 通常是逻辑应用中使用的电源电压的两倍。不仅器件参数漂移可能变得显著,而且还可能触发栅极-漏极区域的硬击穿(BD)。因此,准确评估关断状态 TDDB 的可靠性并深入了解器件级的磨损机制至关重要,因为可以在 28nm FDSOI CMOS 节点的漏极(图 1a、c)和栅极(图 1b、d)电流上观察到击穿事件。由于空穴和电子的碰撞电离 (II) 阈值能量和能垒高度不同,因此导通或关断状态下热载流子 (HC) 的产生及其 V GS / V DS 依赖性在 N 沟道和 P 沟道中明显不同[3] 。通过低栅极电压下的 HC 敏感性对 P 沟道和 N 沟道进行了比较[4],重点关注注入载流子效率,一方面主要考虑导通状态下的热载流子退化 (HCD) 下的 P 沟道侧,另一方面考虑关断状态下的 N 沟道侧,因为热空穴注入引起的损伤和 BD 敏感性更大。这意味着高能 HC 可能在关断模式下在栅极-漏极区域触发 BD 事件[5-6],与热空穴效率有关[7] 。
TDDB仍然是超短路通道CMOS节点中的关键可靠性问题,并保证了速度性能和低消耗要求。在AC RF信号操作“外状态”过程中,从低(kHz)到非常高的频率范围(GHz)[1-2]依次以“状态”模式出现。即使“偏离状态”应力通常以比“州内”应力较小的速率降低设备,它也可能成为RF域中设备操作的限制因素,而对于逻辑应用中使用的供应电压V DD通常翻了一番。不仅设备参数漂移可能会变得很重要,而且还可以触发严重分解(BD)到Gate-Drain区域中。因此,至关重要的是要精确评估态度TDDB的可靠性,并深入了解设备级别的磨损机制,因为可以在排水管上观察到故障事件(图。1a,c)和门(图。1b,d)28nM FDSOI CMOS节点中的电流。由于影响电离的差异(ii)孔和电子的阈值能量和能屏障高度,在州或偏离状态下的热载体(HC)生成及其V GS / V DS依赖性在N通道和P通道上明显不同[3]。通过低闸门敏感性进行了的比较[4],重点是注射的载体效率,一方面,在Onders HCD下,在N-Channel侧受到较大的损害,在N-Channel侧受到了较大的损坏,并且在较大的n-channel侧受到较大的损害,并且在较大的n-channel方面受到了较大的损害,并且在较大的n-channel侧受到了较大的损害。的比较[4],重点是注射的载体效率,一方面,在Onders HCD下,在N-Channel侧受到较大的损害,在N-Channel侧受到了较大的损坏,并且在较大的n-channel侧受到较大的损害,并且在较大的n-channel方面受到了较大的损害,并且在较大的n-channel侧受到了较大的损害。这种暗示的高能量HC可能会在栅极排水区域的OFF模式下触发BD事件[5-6]与热孔效率相关[7]。
4Gb/s CMOS 全差分模拟双延迟锁定环时钟/数据恢复电路 Zhiwei Mao 和 Ted H. Szymanski 光网络研究组,ECE 系麦克马斯特大学,安大略省汉密尔顿,加拿大 L8S 4K1 摘要 提出了一种 4Gb/s 功率和面积高效的时钟/数据恢复 (CDR) 电路。采用全差分设计来抑制任何共模噪声并显著降低电源/地弹。模拟双延迟锁定环 (DLL) 架构将时钟采样边沿持续对齐到输入数据眼图张开的中心。自校正功能可避免传统 DLL 的相位捕获范围限制。原型电路采用 0.18um CMOS 技术实现。 CDR 采用 0.18µm CMOS 技术,占用 200 x 320 2 um 的小面积,在 2V 电源下功耗仅为 27mW。1. 简介随着 VLSI 系统的速度性能迅速提高,近年来小型低功耗高速 I/O 接口得到了广泛的研究。延迟锁定环 (DLL) 和锁相环 (PLL) 均可用于 CDR 电路以消除时钟/数据偏差并改善整体系统时序。在有参考时钟的情况下,通常使用 DLL,因为与 PLL 相比,DLL 不会累积相位误差。此外,DLL 通常具有更简单的设计并且本质上很稳定。传统 DLL 的缺点是其有限的相位捕获范围和输入时钟抖动传播。此外,数字 DLL [1] 不可避免地存在量化误差,并且通常需要更大的面积和功耗,而模拟 DLL 设计 [2] 被指责对噪声更敏感。本文提出了一种新型 CMOS CDR 电路,该电路采用全差分结构来降低对共模噪声的敏感性,并应用模拟双 DLL 来实现连续相位对齐和稳健的数据恢复。CDR 核心电路在 4Gb/s 的数据速率下消耗面积小、功耗低。本文安排如下:第 2 节介绍 CDR 架构,第 3 节讨论在 0.18um CMOS 技术中原型实现该架构的电路设计问题,第 4 节展示原型芯片实现和仿真结果,第 5 节总结本文。
实践,其容量要低得多,而且其速度性能也很差。循环与高电位高有关,导致低能量效率,而随附的寄生反应会导致循环寿命短。锂,带来了其自身的一系列问题,包括较差的库仑效率(由于一系列寄生反应导致固体电解质相间(SEI)(SEI)和树突形成)。可能需要合适的膜来防止在电极上形成的氧气和降解产物的交叉,至少从原则上讲,以帮助减轻树突问题。此外,这些挑战是用于使用氧气,严格锂 - 氧气电池(LOB)的细胞,并且空气的使用带来了其他问题,这主要是由于存在二氧化碳。我们和其他人广泛讨论和审查了实验室的各种挑战。1,2,例如,我们中的一些讨论系列(Ellison等人,https://doi.org/10.1039/d3fd00091e)提出,要构建一个实用的高能量 - 能量实验室,该实验室将以适度的周期速率运行,需要将空气压缩到20 bar左右,并且需要大约100 m的碳电极(> 90%)碳电极厚度约为100 m。电解质也需要具有高沸点(约大约250°C)防止过量蒸发并具有有利的氧运输特性,例如通过,例如,溶剂分子和/或含有Apolaruorasined或烷基区域的盐。可以缓解这些要求的可能方法包括使用分层多孔结构,泵送电解质,通过细胞泵送电解质或进一步增加电池中架空气体的压力。其中一些方法表现出重要的工程挑战,可以实现,所有这些方法都带来了相关的成本和/或质量。本文仅限于对一些用于理解锂氧气中功能和故障的表征方法的简短讨论。已用于研究电池的各种技术,包括拉曼光谱研究排放产品,3 X射线光电光谱(XPS),用于研究锂SEI,4和X射线差异(XRD)5的组成,以研究晶体排放产品,以及其他许多内容,以及许多现有评论中的晶体排放产品。1,2因此,我们主要关注的是审查一些作者开发的许多方法,这些方法通常(但并非独家)涉及使用NMR光谱,然后最终通过对这些系统中使用EIS和Operando nmr的lithium-Metal So s so tarriake the Tarre fer呈现新的结果。