随着强大的稀土磁性材料的发展,机电执行器变得更轻更紧凑。数字电机控制器的出现进一步推动了这一发展,数字电机控制器允许直流电机以极高的位置精度和速度控制运行,而无需使用换向器电刷。去除换向器电刷可大大提高电机寿命。这些变化已使航空业从液压驱动转向机电驱动。液压执行器在其最简单的形式中是所有执行器组件中零件数量最少的执行器组件之一。通常,液压执行器的物料清单将包含 10 到 20 个零件,而机电执行器的物料清单则包含 30 到 40 个零件。然而,在确定执行器的功能可靠性时,必须考虑整个系统。在这个过程中,液压驱动的弱点暴露无遗。通常,对于液压飞机应用,将有: 一个液压泵
锂电池是电动汽车,便携式设备和储能系统等物品中最常见的能源存储设备。与我们的智能手机一样,电动汽车依靠锂离子电池。但是,如果没有适当的监控,这些电池可能会迅速恶化并构成安全风险。我们的解决方案通过实施不断评估电池健康并估算其剩余电荷的特殊算法来解决此问题。通过利用人工智能(AI),我们确保对电池健康和充电水平进行准确的预测。此外,我们强调了速度控制对电动汽车安全的重要性。为了减轻与充满电的电池相关的风险,我们已经集成了额外的安全措施。我们的方法利用AI和物联网(IoT)为电动汽车建立实时监控系统。该系统收集和分析数据,甚至可以预测何时需要维护。通过高级传感器技术和通信系统,我们的解决方案增强了电动汽车的安全性,效率和耐用性,从而使它们更具吸引力,以满足运输需求。
4. 测试系统电池电压 接收器和舵机供电不足是导致故障的主要原因。如果您使用的是接收器组,请确保其已正确充电并检查负载下的电压 (HAN172)。如果 4 节电池组的电压低于 4.8V,请勿飞行。在使用 BEC 的系统中,确保您驱动的舵机数量不超过制造商为 BEC/速度控制推荐的数量。如果电压在任何时候低于接收器的工作阈值,则可能会发生链路中断,随后接收器上的指示灯会闪烁。测试可疑设置的更准确方法是按照第 17 页上的说明测量电压。注意:如果在不循环发射器的情况下循环接收器电源,也会出现指示灯闪烁的情况。在这种情况下,这并不表示存在问题。循环 Tx 电源,然后循环 Rx,以重置指示灯。
控制面板 发动机仪表板 壁挂式 EMCP II+ 独立水套水和后冷却器回路 入口/出口连接 高温发动机驱动的 JW 泵。恒温器和外壳 发动机驱动的交流泵 干式排气 柔性接头:弯头、法兰和膨胀器 消声器和带比较法兰的火花抑制消声器 燃料 客户或经销商提供的空燃比控制 后入口连接 SR4B 发电机,包括: 固定安装的断路器 永磁励磁 中压或高压 模绕定子 轴承温度检测器 (RTD) 定子 RTD 低压扩展盒 带 PF/kVAR 的 Cat 数字电压调节器 (Cat DVR) 带 PF/kVAR 控制的电缆接入盒 发电机空气滤清器 空间加热器 欧洲母线 无标准速度控制 散装 2301A 速度控制器 2301A 负载共享调速器 2301D 双增益调速器
描述 Hi-Drive 是一款全数字驱动器,适用于电流为 2 至 450 A 的无刷电机,采用 230 VAC 或 480 VAC 电源供电。Hi-Drive 能够控制感应电机;其目标市场是需要高精度、准确度、性能、现场总线连接和定制应用的市场。Hi-Drive 具有多种内置运动控制功能,包括电流、扭矩和速度控制、梯形轮廓定位、可变比率和相位校正的数字锁定、电子凸轮、实时模式、S 斜坡定位、归位功能和位置捕获。带有 Power PC 400 MHz 微处理器的轴卡能够通过 CANopen DS402 控制多达 32 个插补轴,进一步增强了 Hi-Drive 的功能。Hi-Drive 系列适用于简单和极其复杂的应用,例如:印刷机、木材和金属加工机、送料机、码垛机、具有不同插补轴的应用和机器人。
摘要本文提出了一种通过自动驾驶系统(ADS)设计协调来进行控制的方法。它以先前的结果为基础,以避免碰撞策略的结果和通过以地图的形式对其静态环境的描述以及其Vehicles的动态行为来建立广告的建模。广告被建模为一个动态系统,以燃烧一组由运行时协调的车辆,该车辆根据地图上的车辆位置及其动力学属性计算每个车辆的自由空间。vehicles被限制在相应分配的自由空间内移动。,如果广告的车辆和运行时尊重相应的假设保证会议,我们通过设计安全控制政策提供了正确的正确控制策略。通过证明假定保证合同的组成是一种需要广告安全的诱导不变的,从而确定了结果。我们表明,实际上可以为符合其合同的车辆定义速度控制政策。更重要的是,我们表明可以在线性时间逻辑中指定运行规则,作为限制车辆速度的一类公式。主要的结果是,鉴于一组运行规则,可以得出运行时的可用空间策略,以便通过设计相对于规则而设计的系统行为是安全的。
卡车排驾驶是当前自动驾驶的分支,它有可能从根本上改变专业驾驶员的工作常规。在排系统中,一辆卡车(半)自动遵循距离降低的铅卡车,从而可节省大量燃料并实现更好的交通流量。在当前使用卡车排驾驶的应用中,以下车辆以2级自动化运行。因此,以下卡车的驾驶员只需要监督半自动化系统,该系统接管转向和速度控制。Level-2卡车排驾驶以前尚未与专业司机进行实际交通测试。我们假设在排驾驶经验后,用户接受度将有所改善。定量问卷和定性访谈是在经过广泛的自动bahn体验之前和之后对10个司机进行的。结果显示经验后的接受程度明显增加。排驾驶评估为更有用,更易于使用,并且经历后更安全。除了感知到驾驶安全性,卡车排的声望,系统的感知有用性以及一般技术亲和力共同确定的用户接受。
摘要:本文探讨了智能运输系统的领域,特别是在智能移动性的背景下以回旋处作为潜在解决方案。回旋处提供了更安全,更高效的驾驶环境,这要归功于它们的曲线轨迹促进了速度控制和降低车辆速度以减轻交通镇定。综合评论支持作者在回旋处的设计和评估中提出当前的知识和新兴需求。需要对用于评估回旋处系统安全性和操作性能的模型和方法进行重点检查。鉴于汽车市场带来的新挑战以及车辆到车辆通信对该道路基础设施的概念化和设计的影响,这尤其重要。在Aimsun中分析了两个回旋处的案例研究,以模拟连接和自动驾驶汽车(CAVS)的市场渗透率不断提高及其交通影响。通过微观交通模拟,该研究评估了回旋处的安全性和性能效率的进步。本文结论是概述领域,以进一步研究和不断发展回旋处在过渡到互联和自动驾驶汽车和基础设施过渡中的作用的观点。
摘要 近年来,电力推进系统在船舶工业中的应用越来越广泛。螺旋桨的控制一直是该行业优先考虑的设计挑战。螺旋桨控制的关键问题之一是船舶的速度控制。合适的螺旋桨控制策略应具有经济效益,同时确保船舶电力系统的稳定性、可靠性和电能质量。本文提出了一种改进的螺旋桨控制策略来提高/降低船舶速度。该方案包括两种策略:最大加速度策略和高效运行策略。最大加速度策略旨在快速达到最终速度设定值。另一方面,高效运行策略被认为可以提高船舶电力系统的可靠性和电能质量,并且加速度略高于传统方法。此外,还采用机械指标来比较各种变速策略的性能。利用该指标(即寿命损失 (LoL)),分析了变速操作对螺旋桨轴疲劳的影响,并讨论了所提方法在提高螺旋桨寿命方面的优势。模拟表明,采用所提出的变速方案可将螺旋桨机械磨损降低至传统方法的约 1.8%,从而延长其寿命。
Eleg 3348嵌入式微控制器3个学分的前提:Eleg 3348L,CPSC1131。先决条件:CPEG 2245。本课程涵盖了微控制器的体系结构,包括它们的内部构造方式以及它们与外部电路的接口方式。讨论了微控制器在复杂设备和简单设备中的应用。学生学习如何申请以及如何为给定应用程序选择微控制器。学生将学会为微控制器编程以发展编程技能。软件工具将用于为实用应用程序(例如伺服电机控制,传感器读取和数据显示)开发软件代码。随附的实验室课程涵盖了微处理器的编程,以执行特定的任务。随附的实验室课程涵盖了微处理器的编程,以执行特定的任务。本课程涵盖了PIC微控制器的编程和应用。学生能够使用汇编语言和软件工具(例如Mplab IDE和Multisim MCU)发展编程技能。这些工具用于开发用于实用应用的软件代码,例如电动机速度控制和电源的电压调节。研究生等效:ECEG 5348。以前EE 0346。