1983 年 10 月的《通用重量和测量法》(CGPM)写道:“米是光在 1/299 792 458 秒的时间间隔内,在真空中行进路径的长度。” [2] 米的这个定义将光速精确地固定为 299 792 458 米/秒。根据这个定义,米可以通过任何已知频率的相干光源的波长来实现,例如,稳定在窄原子或分子吸收区的激光器,其频率是已知的。波长 X 可以通过关系 A = c / w 确定,其中 c 是光速的计算值,w 是测得的跃迁频率。自 1972 年测量以来,已进行过四次光速测量 [3-6];两个波长为 3.39 pm,两个波长为 9.31 pm。这些测量结果已汇总 [7],光速的平均值为 299 792 458.1 m/s,分数不确定度为 f 4 x IOv9 (3a),这是根据氪定义实现仪表时公认的不确定度。
1卢里家族基金会MEG成像中心放射科,费城儿童医院,费城,宾夕法尼亚州费城,美国,美国2放射学系,宾夕法尼亚大学宾夕法尼亚大学佩雷曼医学院,宾夕法尼亚州费城大学,美国宾夕法尼亚州费城大学,美国3号中心,自闭症医院,帕尔,帕尔,帕尔,帕特里亚司,帕尔,帕尔,帕尔,帕尔,帕尔,帕尔,帕尔,帕尔,帕尔,pa发育和行为儿科,费城儿童医院,宾夕法尼亚州费城,美国,5儿科学系,宾夕法尼亚州宾夕法尼亚大学佩雷曼医学院,宾夕法尼亚州费城大学,美国精神病学系6号,佩雷尔曼学院,佩雷尔曼学院6,宾夕法尼亚州佩雷曼医学院美国宾夕法尼亚州费城杰森大学
联络通道是地铁隧道内常见结构,为事故隧道人员快速疏散至对面安全隧道提供通道。地铁隧道联络通道通风是通过隧道两侧通风系统的协同作用实现的。同时,列车堵塞、车厢内热量积聚等因素也会影响地铁隧道内烟气运动,前者需要进一步细化,以预测防止烟气进入地铁隧道联络通道所需的临界速度和驱动力。通过一维理论分析和全尺寸冷烟实验,研究了两侧隧道风机送风参数与联络通道通风速度之间的关系,提出了隧道联络通道烟气控制对侧安全隧道风机选型计算模型。通过数值模拟,量化了列车位置、火灾热释放速率和主隧道通风速度对联络通道临界速度的影响。结果表明:畅通条件下联络通道内临界速度大于阻塞条件下的临界速度,且临界速度在畅通和阻塞条件下均表现出相对稳定性。在无量纲分析的基础上,提出了一种分段函数来预测隧道联络通道内临界速度。研究结果可为类似结构的隧道防火防烟措施的实施提供有益指导。
NXP 的 KMI 系列磁阻 (MR) 转速传感器为所有应用提供了解决方案。它们是专为满足汽车系统需求而设计的,是完整的即用型模块,包括传感器、反向偏置磁体和高级信号调节 IC。这些设备具有最大的设计灵活性,可选择输出信号和单独磁化的反向偏置磁体。
放置是一项至关重要的任务,在VLSI物理设计中具有高计算复合物。现代的分析贴花将放置目标作为非线性优化任务,遭受了长时间的迭代时间。为了加速和增强放置过程,最近的研究转向了基于深度学习的方法,尤其是利用图形卷积网络(GCN)。但是,由于电路放置的复杂性涉及大规模的单元格和特定于设计的图形统计,因此基于学习的位置需要时间和数据消耗的模型培训。本文提出了礼物,这是一种无参数的技术,用于加速位置,植根于图形信号处理。礼物擅长捕获电路图的多分辨率平滑插图,以生成优化的放置解决方案,而无需进行耗时的模型训练,同时显着减少了分析放置器所需的迭代次数。实验结果表明,礼物可显着提高放置效率,同时达到竞争性或卓越的性能与最先进的垫片相符。,与
激光驱动的离子光束因其在多学科研究和技术中的潜在使用而引起了极大的关注。临床前研究对它们的放射生物学有效性,已经确定了使用激光驱动的离子束进行放射疗法的前景。特别是,通过高离子束电荷和激光驱动的离子束的唯一短束长度来实现对超高瞬时剂量率的有益作用的研究。此类研究需要可靠的在线剂量测定方法,以监视每次激光射击的束电荷,以确保将规定的剂量准确地应用于生物样品中。在本文中,我们介绍了对激光驱动离子加速器的集成电流变压器(ICT)的首次成功使用。这是一种无创诊断,用于测量加速离子束的电荷。它可以在线估计放射生物学实验中施加的剂量,并促进离子束调谐,特别是对激光离子源的优化以及质子传输光束线的对齐。我们介绍了ICT实施和与其他诊断的相关性,例如放射性膜,汤姆森抛物线光谱仪和闪烁体。
Ayşegül Begüm Kerey 和 Enrico D'Alessandro 过去几年中,AI 在招聘领域的应用加速发展。然而,人力资源经理明显不愿意为其部门投资 AI 工具。为了了解引发这种抵制的原因,本论文研究了影响 AI 在人力资源领域应用速度的因素,重点关注招聘解决方案。在设计受权变视角启发的分析框架时,通过文献综述搜索了这些因素,并通过定性研究在大小和方向上测试了它们的影响。为此,作者进行了一个涉及外部合作伙伴(一家 AI 解决方案提供商初创公司)的案例研究。对不同级别的利益相关者进行了总共 16 次半结构化访谈,包括外部合作伙伴的员工、投资者、竞争对手和最终用户。最后,对 AI 招聘市场进行了战略分析。我们的目标是,将有关这些因素的信息与战略分析相结合,使行业内的公司能够做出更明智的战略决策。关键词:招聘中的人工智能、招聘中人工智能的采用、影响采用的因素、测试因素、战略分析。
摘要:在临床前模型中跟踪神经血管疾病进展的潜在方法是多光子荧光显微镜(MPM),它可以用毛细血管级别的分辨率对脑脉管系统进行成像。但是,获得具有传统点扫描MPM的高质量的三维图像是耗时的,并且限制了用于慢性研究的样本量。在这里,我们提出了一种基于卷积神经网络(PSSR RES-U-NET结构)算法,用于快速对低分辨率或稀疏采样图像进行快速升级,并将其与无分段的无分段矢量化过程相结合,用于3D重建和血管网络结构的统计分析。这样做,我们还证明了半合成训练数据的使用可以取代获得低分辨率和高分辨率训练对而不损害矢量化结果的昂贵且艰巨的过程,从而为收集培训数据的其他MPM任务带来了这些方法的可能性。我们将方法应用于来自小鼠模型的大量视野的图像,并表明我们的方法在成像深度,疾病状态和神经血管内的其他差异中概括了。我们验证的模型和轻量级体系结构可用于将MPM成像时间最多减少四倍,而无需对基础硬件进行任何更改,从而可以在各种设置中可部署性。
不过,这就是事情。在加速研究方面,运行AI算法是相对容易的部分。收集,清洁和管理该算法的数据馈送,这是重型升降机。失败
摘要:检测从尖端 - 样品连接散射的电磁辐射已使衍射限制并开始了Polariton纳米影像的繁荣场。但是,大多数技术仅解决散射辐射的振幅和相对相。在这里,我们利用了对超短散射脉冲的场分辨检测来绘制空间和时间上表面极化子的动力学。等离子体极化子是研究的理想模型系统,证明了如何通过直接的数学方程式和归一化方法在时间域中可视化和建模传播模式。这种新颖的方法可以直接评估极化子的组和相速度以及阻尼。此外,它与泵 - 探头方案的结合特别强大,可在光激发时追踪极化子繁殖的亚周期变化。我们的方法很容易适用于其他量子材料,提供了一种多功能工具来研究极性子的超临时空间时空动力学。关键字:Terahertz表面等离子体极化子,近场光学显微镜,S-SNOM,野外分辨,石墨烯,时间分辨,超时地图,相位速度,组速度,群体速度,全光照控制