通过微生物降解抗抗危机是目前最佳和最低成本的方法,仅涉及微生物细胞和/或其酶。使用一系列生化测试对细菌进行表征。从碳水化合物发酵,柠檬酸盐利用和过氧化氢酶测试中获得了阳性结果,而voges-proskauer(VP)和吲哚测试获得了阴性结果。通过气相色谱 - 质量分光光度计(GC-MS)分析对三种不同的咖啡因浓度为0.25%,0.4%和2%。在培养基中使用0.25%的咖啡因时,发现最高的咖啡因还原(89.25%)。只有少量咖啡因降低至0.4%和2%,分别为34.78%和46.16%。在微观观察下,分离的细菌的形状为rod杆菌,并用粉红色染色,表明革兰氏阴性菌。将结果与先前的研究和观察纯培养的颜色进行比较(揭示出黄色的颜色),可以从咖啡种植园区分离出来,可以得出结论是部分鉴定出的假单胞菌sp。关键字:咖啡因降解,咖啡,假单胞菌1。引言欧洲已成为最大的咖啡消费者,几乎是全球消费的40%,其次是美国和日本,分别占24%和10%[1]。亚洲人,例如中国和日本的人,最初是饮酒者。但是,咖啡消费者每年不断增加。咖啡种植园区的位置始于19世纪,位于马来西亚。引入咖啡是在橡胶种植园存在之前曾经是最重要的农作物。咖啡含有一种称为咖啡因的化学兴奋剂。咖啡中咖啡因的百分比通常取决于其起源,酿造方法等。烤和咖啡与速溶咖啡的比较结果表明,根据美国食品和药物管理局提供的范围,烤和咖啡中的咖啡因总量更高。除了咖啡外,还可以在茶,软饮料,可可,巧克力饮料和任何其他类型的饮料中找到咖啡因。具有60多种类型的植物,咖啡因自然存在,可以从植物的叶子,种子和水果中提取。咖啡已被广泛用作饮料饮料,但消费者对咖啡因隐藏作用的意识缺乏。在降低其效果时,脱咖啡因的咖啡已成为某些人的替代饮料。
能够看到更详细证明胡克的含义的小物体。分子生物学的发展在1953年的时代开始迅速发展,即沃森和克里克发现了脱氧核酸(DNA)结构。考虑到这两个人还很年轻,这一发现实际上是非常出乎意料的。真正改变了科学和所有将生物作为学习对象的分支机构的秩序。其他也影响的科学既是生物学,医学,农业,畜牧业,渔业,健康和其他涉及的科学。用术语,分子生物学是一门讨论在DNA,RNA,氨基酸和蛋白质水平的结构,过程和机制的科学。从广义上讲,基于观察到的研究,即基因组和蛋白质组学,分子生物学是分离的。基因组讨论了与DNA和RNA相关的结构,过程和机制,从结构,转录过程,DNA修饰过程,替代splization,从细胞核到细胞质的转化开始,从核糖体从核糖体中释放mRNA。蛋白质组学讨论了氨基酸的结构,氨基酸链的修饰和蛋白质结构。水是植物,动物和人类生活中非常重要的材料。对清洁水,尤其是饮用水的需求,随着人口的需求和生活水平的增加,人们的需求越来越多。活细菌被殖民并可以住在任何地方。,2018年)。饮用水目前也正在迅速增加,因为需要负担得起的家庭和零售店的速溶饮用水。重新饮用水现在是印度尼西亚人民的流行选择,因为它往往更便宜,更容易获得。这将鼓励可以为当地社区服务的饮用水储存行业(DAM)的发展。每个补充饮用水仓库都有一个加工设施,可以清洁容器,可容纳饮用水。质量不符合标准的饮用水将对健康产生负面影响,因为有致病性细菌使饮用水成为分布的媒介。自然资源中的水可以被人类喝醉,但仍然有风险被细菌污染(例如大肠杆菌)或有害物质。细菌是单细胞或单细胞生物,其大小为1-2微。细菌分为革兰氏阳性细菌和革兰氏阴细菌。DNA提取过程以将DNA基因组与细胞中的其他分子分开。DNA分析的第一步是通过从血液中提取DNA基因组将DNA基因组分离为较小的特异性片段(Sjafaraenan等人。隔离DNA是获得遗传信息和遗传分析活性的重要阶段之一。DNA具有良好的DNA用于活性,例如在原理中使用DNA隔离分子标记