摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。
脱碳复杂的工业能源系统是减轻气候变化的重要步骤。设计此类部门耦合的工业能源系统向低碳设计的过渡非常具有挑战性,因为在系统设计中,必须考虑成本效益的操作和整个生命周期中环境影响的减少。可以使用软件来确定最佳系统设计:最近,引入了开源框架SECMOD,以通过完全整合生命周期评估来考虑环境影响,以实现多能系统模型的线性优化。在这项工作中,我们扩展了SECMOD,以允许综合决策对于建模工业能源系统至关重要。因此,我们提供了第一个开源的混合企业线性程序框架,并完整地集成了生命周期评估。我们使用secmod来研究扇区耦合的工业能源系统中抽水热量的储能系统的好处,并通过比较经济和气候最佳限度来确定有关系统设计的权衡。
该团队将把他们的 PAM 工具应用于跨越十年的 PMRF 数据集,以研究布氏鲸的发声和提示率,并比较随时间和运动行为状态的提示率。工作将包括手动验证先前在数据集中识别的布氏鲸叫声。分析结果还将与已发布的提示率进行比较,以评估随时间、位置或种群的稳定性。将根据环境变量(例如一年中的时间、季节、风和波浪数据)以及其他情境数据(例如与最近的呼叫布氏鲸的距离)检查轨迹运动学。
v/ ϵ v,j =0 UMN Morse NN 0 0.1466 0.1457 0.1479 1 0.4380 0.4340 0.4411 2 0.7259 0.7180 0.7307 3 1.0104 0.971 1.2616 30 1.2988 5 1.5686 1.5440 1.5771 6 1.8423 1.8107 1.8515 7 2.1124 2.0731 2.1221 8 2.3789 2.3312 2.388 2.65 10 2.9008 2.8344 2.9102 11 3.1563 3.0795 3.1651 12 3.4081 3.3203 3.4161 13 3.6562 3.5568 3.6633 1.6563 7.973 4.1414 4.0168 4.1463 16 4.3785 4.2404 4.3821 17 4.6118 4.4596 4.6142 18 4.8415 4.6745 4.8427 19 5.05 4.85 4.85 96 5.0913 5.2885 21 5.5080 5.2933 5.5059 22 5.7226 5.4909 5.7197 23 5.9333 5.6842 5.9298 24 6.14025 2.3626 .0579 6.3388 26 6.5422 6.2382 6.5377 27 6.7372 6.4143 6.7327 28 6.9281 6.5860 6.9239 29 7.1148 6.753 7.1716 5 7.2941 31 7.4753 7.0753 7.4730 32 7.6488 7.2298 7.6475 33 7.8179 7.3799 7.8176 34 7.9821 7.5257 7.183 1.66 1438 36 8.2960 7.8044 8.2995
量子通信基于量子态的生成和量子资源在通信协议中的利用。目前,光子被认为是信息的最佳载体,因为它们能够实现长距离传输,具有抗退相干性,而且相对容易创建和检测。纠缠是量子通信和信息处理的基本资源,对量子中继器尤为重要。超纠缠是一种各方同时与两个或多个自由度 (DoF) 纠缠的状态,它提供了一种重要的额外资源,因为它可以提高数据速率并增强错误恢复能力。然而,在光子学中,处理线性元素时,信道容量(即最终吞吐量)从根本上受到限制。我们提出了一种使用超纠缠态实现更高量子通信传输速率的技术,该技术基于在单个光子上多路复用多个 DoF,传输光子,并最终在目的地使用贝尔态测量将 DoF 解复用为不同的光子。按照我们的方案,只需发送一个光子即可生成两个纠缠的量子比特对。提出的传输方案为具有更高传输速率和对可扩展量子技术的精细控制的新型量子通信协议奠定了基础。
在仪器和建模方面的持续发展使大气科学越来越复杂,对概念,机制和相互作用的理解更加复杂。这是创新建立的领域,这使人们对与气氛的复杂性有了更好的欣赏。人类的生活在这种复杂性中交织在一起,因为我们努力更好地了解我们的气氛。气候变化不断扩大我们思维的局限性,并迫使新的想法和概念播放。欢迎来到拟人化!
结节性硬化症复合物(TSC)是一种遗传疾病,其特征是细胞过度生长,在整个人体中产生Hamartomas或良性肿瘤。hamartomas通常在脑实质中最常形成,它们被称为块茎。TSC与70-90%的寿命癫痫患者和自闭症谱系障碍(ASD)患病率为40-50%有关(Portocarrero LKL,2018)。块茎中的异常细胞取代了健康细胞,而不是增加大脑中细胞的总数(Crino,2010年),并且有关头圆周长(HC)和宏观畸形(HC大于2个标准偏差高于平均值的HC)的报告是稀疏的(Fidler DJ,2000)。HC增加可能反映了脑实质体积和/或脑脊液(CSF)体积增加(Bartholomeusz HH,2002)。大型畸形以TSC和其他发育障碍的速度为14–29.7%,但仅此前尚未报道过TSC人群中的脑头畸形率(Fidler DJ,2000)(Webb DW,1996)。TSC中HC和癫痫之间的关系也没有先前研究过。
抽象的快速淋巴细胞细胞分裂对蛋白质合成机制提出了巨大的需求。通过翻译起始抑制剂处理细胞或小鼠后,纯种核糖体相关的核糖体相关链的流式细胞仪测量表明,乳腺细胞的典型率在典型的体外静止淋巴细胞和体内细胞中,核糖体在体内延长。有趣的是,通过体内激活或体外的发热温度,可以提高长制速率30%。静止和活化的淋巴细胞具有丰富的单体群体,其中大多数在体内积极翻译,而在体外,几乎所有的都可以在激活之前停滞不前。定量淋巴细胞蛋白质量和核糖体计数表明,细胞蛋白与核糖体的矛盾之比不足以支持其快速的体内分裂,这表明活化的淋巴细胞蛋白质组在体内可能以不寻常的方式产生。我们的发现证明了蛋白质合成在淋巴细胞和其他快速分裂的免疫细胞中的全球构成的重要性。
在过去的几十年中,南极冰盖对海平面上升的贡献一直在增加,预计这种增加会随着温室气体排放的增加而持续(Fox-Kemper等人,2021年)。大部分质量损失发生在冰盖的边缘,通过从接地冰盖到海洋的冰块流动,主要是在南极西部(Khazendar等,2016; Mouginot等,2014; Mouginot et al。,2014; Rignot et al。这是因为冰盖边缘的浮冰搁架(通常是支撑冰流的支撑)迅速变薄并由于其底部的海洋引起的融化而撤退(Adusumilli等,2020; Paolo等,2015; Rignot et al。,2013)。在某些基岩配置中,增加了海洋诱导的熔体甚至会触发海洋冰盖不稳定性(Gudmundsson等,2012; Schoof,2007; Weertman,2007; Weertman,1974),这有可能强烈增加南极质量损失,在一个世纪以下的时间范围内(Fox-Kemper等人,20221年)。这使海洋引起的子架融化或基底融化是未来海平面上升的未来预测的主要不确定性之一。
尽管 QKD 链路可以达到传统方式无法达到的安全级别,但由于光纤损耗会随着距离的增加而呈指数级增长,因此 QKD 链路在全球范围内的实施面临着关键限制。由于量子中继器技术不够成熟,地面 QKD 装置的可达距离最多只能限制在几百公里 [1-3]。因此,卫星中继被认为是实现洲际链路非常有前途的解决方案 [4],多年来,已发表了多项关于自由空间卫星 QKD 的理论和实验可行性研究 [5-11]。然而,特别是对于卫星到地面的链路,大气湍流对信号传播的影响需要优化单模光纤 (SMF) 中的光耦合,这对于与地面站连接必不可少。