结节性硬化症复合物(TSC)是一种遗传疾病,其特征是细胞过度生长,在整个人体中产生Hamartomas或良性肿瘤。hamartomas通常在脑实质中最常形成,它们被称为块茎。TSC与70-90%的寿命癫痫患者和自闭症谱系障碍(ASD)患病率为40-50%有关(Portocarrero LKL,2018)。块茎中的异常细胞取代了健康细胞,而不是增加大脑中细胞的总数(Crino,2010年),并且有关头圆周长(HC)和宏观畸形(HC大于2个标准偏差高于平均值的HC)的报告是稀疏的(Fidler DJ,2000)。HC增加可能反映了脑实质体积和/或脑脊液(CSF)体积增加(Bartholomeusz HH,2002)。大型畸形以TSC和其他发育障碍的速度为14–29.7%,但仅此前尚未报道过TSC人群中的脑头畸形率(Fidler DJ,2000)(Webb DW,1996)。TSC中HC和癫痫之间的关系也没有先前研究过。
高水平的血浆胆固醇,尤其是高密度的低密度脂蛋白胆固醇(LDL-C),与阿尔茨海默氏病的风险增加有关。等离子体中的胆固醇酯转移蛋白(CETP)在脂蛋白之间分布胆固醇酯,并增加血浆中的LDL-C。在流行病学上,CETP活性的降低与衰老,寿命和阿尔茨海默氏病风险较低的持续认知表现有关。因此,可以重新使用药理学CETP抑制剂以治疗阿尔茨海默氏病,因为它们在降低CETP活性和LDL-C方面是安全有效的。尽管CETP主要由肝脏表达并分泌到血液中,但它也由大脑中的星形胶质细胞表达。因此,确定CETP抑制剂是否可以进入大脑很重要。在这里,我们描述了CETP转基因小鼠的血浆,肝脏和脑组织中CETP抑制剂撤离蛋白的药代动力学参数。我们表明,在40 mg/kg i.v.后,撤离蛋白持续交叉横穿血液 - 脑屏障,可在脑组织中检测到0.5小时。在非线性函数中注射。我们得出的结论是,撤离蛋白可能被证明是治疗阿尔茨海默氏病中CETP介导的胆固醇失调的好候选者。
月份; p = 0.015,p = 0.033,p = 0.041;早产次:1个月时为6.8±2.3%,3个月时为7.1±2.1%,在6个月时为7.2±1.9%; p = 0.015,p = 0.022,p = 0.031)。AHRE患病率从1个月的9.7±2.3%增加到3个月时的18.1±4.1%,在6个月时为23.3±5.9%。但是,这些关联在6个月后减少,在1年和2年时持续较少。接收器工作特征曲线分析确定了1个月的94.5%心房起搏百分比截止比例,敏感性为68%,特异性为82%[曲线(AUC)下的面积(AUC):0.806,P <0.001],在3个月时截止94%,敏感性和特异性为68%和901%,<0.8001,<0.8001。对于模式开关发作,1和3个月的1.5截止值分别产生73%和74%的敏感性,分别为99%和98%(AUC:0.890和0.895和0.895,p <0.001)。
– 奥地利空间局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星应用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展局 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊空间局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间组织 (NSPO)/中国台北。 – 海军空间技术中心 (NCST)/美国。 – 荷兰空间办公室 (NSO)/荷兰。 – 粒子与核物理研究所 (KFKI)/匈牙利。 – 土耳其科学技术研究理事会 (TUBITAK)/土耳其。 – 南非国家空间局 (SANSA)/南非共和国。 – 空间与高层大气研究委员会 (SUPARCO)/巴基斯坦。 – 瑞典空间公司 (SSC)/瑞典。 – 瑞士空间办公室 (SSO)/瑞士。 – 美国地质调查局 (USGS)/美国。
量子比率理论定义了符合普朗克 - 因斯坦关系𝐸= ℎ𝜈 = ℎ𝜈 = ℎ𝜈 =𝑒=𝑒22 ∕ℎ𝐶的量子机械速率是一个与量子电容𝐶𝐶𝐶𝐶𝑞𝐸=𝐸=𝐸=𝑒=𝑒22 ∕𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑞以前,这种对𝜈的定义已成功地用于定义氧化还原反应的电子转移(ET)速率常数的量子机械含义,其中与ET反应有关的法拉达电流证明了与室温下的相对论量子电动力学有关(Bueno,2023c)。这项研究表明,𝜈的定义需要与态密度的扰动(𝑑𝑛𝑑𝑛𝑑𝐸)=𝐶𝑒2的扰动本质上相关的相对论量子电动力学现象。在此基础上,计算了嵌入电解质环境中的石墨烯的电子结构。使用量子比率光谱法(QRS)测量的电子结构与通过角度分辨的光发射光谱(ARPE)或通过计算密度功能官能理论(DFT)方法计算得出的电子结构非常吻合。电化学QRS比ARPE具有明显的实验优势。例如,QRS可以在室温和电解质环境下获得石墨烯的电子结构,而ARPES需要低温和超高效率。更重要的是,QRS可以使用手持式,廉价的设备在原位上操作,而Arpes一定需要昂贵且繁琐的设备。
摘要:研究氢在铜表面的解离吸附和复合脱附的动力学,使我们对表面化学有了原子级的理解,但迄今为止,通过实验确定这些过程的热速率(决定催化反应的结果)仍是不可能的。在这项工作中,我们使用反应动力学实验的数据确定了 200 至 1000 K 之间氢在 Cu(111) 上的解离吸附和复合脱附的热速率常数。与目前的理解相反,我们的研究结果表明,即使在高达 400 K 的温度下,量子隧穿仍然起着主导作用。我们还提供了 H 2 在 Cu(111) 上的反应势垒(0.619 ± 0.020 eV)和吸附能(0.348 ± 0.026 eV)的精确值。值得注意的是,热速率常数与基于环聚合物分子动力学新实现的表面反应第一原理量子速率理论高度一致,为使用可靠、高效的计算方法发现更好的催化剂铺平了道路。
* 通讯作者:Tobias Heindel,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:tobias.heindel@tu-berlin.de。https://orcid.org/0000-0003-1148-404X Lucas Rickert、Daniel A. Vajner、Martin von Helversen、Sven Rodt 和 Stephan Reitzenstein,柏林工业大学固体物理研究所,Hardenbergstraße 36, 10623 Berlin, Germany,电子邮件:lucas.rickert@tu-berlin.de(L. Rickert)。https://orcid.org/0000-0003-0329-5740(L. Rickert)。https://orcid.org/0000-0002-4900-0277(DA Vajner)。 https://orcid.org/0000-0003-4494-4698(M. von Hervelsen)。 https://orcid.org/0000-0002-1381-9838 (S. Reitzenstein) Kinga Żołnacz,弗罗茨瓦夫科技大学光学与光子学系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0002-1387-9371 刘汉清,李树伦,倪海桥,牛志川,中国科学院半导体研究所光电材料与器件重点实验室,北京 100083;中国科学院大学材料科学与光电工程中心,北京 100049,E-mail: zcniu@semi.ac.cn (Z. Niu)。 https://orcid.org/0009-0004-7092-2382(H.刘)。 https://orcid.org/0000-0002-9566-6635 (Z. Niu) Paweł Wyborski,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰;丹麦技术大学电气与光子工程系,2800,Kgs.,Lyngby,丹麦 Grzegorz Sęk 和 Anna Musiał,弗罗茨瓦夫科技大学实验物理系,Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wroclaw, 波兰。 https://orcid.org/0000-0001-7645-8243(G. Sęk)。 https://orcid.org/0000-0001-9602-8929(A.Musiał)
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:等效电路模型 (ECM) 是模拟锂离子电池行为以监控和控制它们的最常用技术。此建模工具应足够精确以确保系统的可靠性。影响 ECM 精度的两个重要参数是施加的电流速率和工作温度。如果不彻底了解这些参数对 ECM 的影响,则应在校准过程中手动进行参数估计,这是不利的。在这项工作中,开发了一种增强型 ECM,用于高功率锂离子电容器 (LiC),适用于从 −30 ◦ C 的冻结温度到 +60 ◦ C 的高温,施加的电流速率为 10 A 至 500 A。在此背景下,通过对具有两个 RC 分支的 ECM 进行建模,进行了实验测试以模拟 LiC 的行为。在这些分支中,需要两个电阻和电容 (RC) 来保持模型的精度。验证结果证明,半经验二阶 ECM 可以高精度地估计 LiC 的电气和热参数。在此背景下,当电流速率小于 150 A 时,开发的 ECM 的误差低于 3%。此外,当所需功率较高时,在 150 A 以上的电流速率下,模拟误差低于 5%。
确定有效的治疗策略是改善乳腺癌患者治疗效果的主要挑战。为了全面了解临床相关的抗癌药物如何调节细胞周期进程,我们使用基因工程乳腺癌细胞系来追踪药物引起的细胞数量和细胞周期阶段的变化,以揭示随时间变化的药物特异性细胞周期效应。我们使用线性链技巧 (LCT) 计算模型,该模型可以忠实地捕捉药物引起的动态反应,正确推断药物效应,并重现对特定细胞周期阶段的影响。我们使用 LCT 模型来预测未见药物组合的影响,并在独立的验证实验中证实这些影响。我们综合的实验和建模方法为评估药物反应、预测有效的药物组合和确定最佳药物排序策略开辟了道路。