目的研究是在测试来自阿拉比卡咖啡,可可和红茶叶的咖啡因提取物,作为在酸性环境和含酸性生物柴油的钢腐蚀速率的抑制剂中进行的抑制剂。长期将生物柴油B30存储在储罐中长期储存,导致pH,不完全燃烧和储罐中的腐蚀减少,这被认为是由细菌联盟的活性引起的。在先前的研究中,结果表明,主要属是产生酸性细菌的,这被怀疑是储存过程中Bi-Odiesel B30 pH值降低的原因。基于生物柴油B30的元基因组学分析,发现Eubacteria属是在厌氧条件下引起腐蚀的细菌。方法,因此在这项研究中,通过添加12%H 2 SO 4制成了微生物产生的酸度条件。咖啡因提取物是从溶剂比为70%乙醇的麦克雷拉过程中获得的:有机含量,即1:2和1:3。使用HPLC方法以0.8 mL/min的流出速率进行咖啡因提取物测试。同时,在沉浸式的0、1、4、7和10天观察到钢的腐蚀抑制效率测试。结果以前使用的钢与12%H 2 SO 4腐蚀。浸泡在H 2中的钢的最佳抑制剂结果是4 12%,最好的抑制剂是咖啡2,100.793 ppm,腐蚀速率为84.7 x10 -4 g/cm 2天,第1天至75.5x10 -4 g/cm 2天,第10天,抑制效率为80%。同时,在生物柴油中 -
摘要。目的。信息传输速率 (ITR) 或有效比特率是一种流行且广泛使用的信息测量指标,尤其适用于基于 SSVEP 的脑机 (BCI) 接口。通过将速度和准确性结合为单值参数,该指标有助于评估和比较不同 BCI 社区中的各种目标识别算法。为了计算 ITR,通常假设输入分布均匀,并且通道模型过于简单,该模型无记忆、静止且本质上对称,字母大小离散。因此,为了准确描述性能并启发未来 BCI 设计的端到端设计,需要更彻底地检查和定义 ITR。方法。我们将视网膜膝状体视觉通路承载的共生通信介质建模为离散无记忆通道,并使用修改后的容量表达式重新定义 ITR。我们利用有向图的结果来表征由于新定义导致的转换统计不对称与 ITR 增益之间的关系,从而得出数据速率性能的潜在界限。主要结果。在两个著名的 SSVEP 数据集上,我们比较了两种尖端目标识别方法。结果表明,诱导的 DM 通道不对称对实际感知的 ITR 的影响大于输入分布的变化。此外,证明了新定义下的 ITR 增益与通道转换统计的不对称呈反比。进一步表明,单独的输入定制可以带来感知的 ITR 性能改进。最后,提出了一种算法来寻找二分类的容量,并进一步讨论了通过集成技术将这些结果扩展到多类情况。意义。我们期望我们的研究结果将有助于表征高度动态的 BCI 通道容量、性能阈值和改进的 BCI 刺激设计,以实现人脑与计算机系统之间更紧密的共生,同时确保有效利用底层通信资源。
确定有效的治疗策略是改善乳腺癌患者治疗效果的主要挑战。为了全面了解临床相关的抗癌药物如何调节细胞周期进程,我们使用基因工程乳腺癌细胞系来追踪药物引起的细胞数量和细胞周期阶段的变化,以揭示随时间变化的药物特异性细胞周期效应。我们使用线性链技巧 (LCT) 计算模型,该模型可以忠实地捕捉药物引起的动态反应,正确推断药物效应,并重现对特定细胞周期阶段的影响。我们使用 LCT 模型来预测未见药物组合的影响,并在独立的验证实验中证实这些影响。我们综合的实验和建模方法为评估药物反应、预测有效的药物组合和确定最佳药物排序策略开辟了道路。
20 世纪 80 年代中后期,美国能源部开始更加重视环境、健康和安全问题。为了响应这些努力,美国能源部国防计划办公室 (DP) 发起了国防计划安全调查 (11/93)。本研究的目标之一是在先前工作的基础上“开发一致的数据和方法,以对基本后果推导参数进行保守估计”。作为这项工作的一部分,总结并评估了空气释放分数和可吸入分数的实验数据,以估计与实验相关的物理应力的合理边界值。该汇编的独特和宝贵性质被认为值得进一步开发为技术分析师可以直接使用的手册。
摘要。In order to explore the effects of different remediation methods on the degradation rate of total petroleum hydrocarbons and enzyme activity in oil-contaminated soil, a study was conducted using six different treatments, including adding rhamnolipid (S), organic fertilizer (F), degradation bacteria (J), rhamnolipid + degrading bacteria (SJ), organic fertilizer + rhamnolipid(SF)和有机肥料 +降解细菌(FJ),以补充油污染的土壤。该研究检查了在不同的培养时间,研究了总石油烃的降解速率的变化以及四种土壤酶(尿素酶,过氧化物酶,脱氢酶和脂肪酶)的活性。结果表明,在修复60天后,所有处理都提高了被污染的土壤中总石油烃的降解率。通过FJ处理获得了最佳结果,降解率为31.72%。所有治疗中的酶活性都显着高于不同培养期间对照的酶活性。统计分析表明,尿素酶,过氧化物酶和脂肪酶的活性与受污染的土壤中总石油烃的残留率显着负相关。脱氢酶的活性与被污染的土壤中总石油烃的残留率高度显着相关。关键词:总石油烃,尿素酶,脱氢酶,过氧化物酶,脂肪酶
土壤存储着重要的碳(C),主要是在不同分解阶段以有机物的形式。因此,了解规则纳入土壤中分解的有机物的速率的因素至关重要,这是更好地了解C股在不断变化的大气和土地使用条件下如何变化。我们使用西班牙纳瓦拉(Navarre)(欧洲西南部)的两个对比梯度沿着16种不同的ecosyss- tems(八个森林,八个草原)中的茶袋指数(八个森林,八个草原)进行了植被覆盖,气候和土壤因素之间的相互作用。这种布置涵盖了四种气候类型的范围,从80到1420 M.A.S.L.和降水(P)从427至1881毫米年度 - 1年。在2017年春季孵化茶袋后,我们确定了植被覆盖类型,土壤C/N与降水之间的强烈相互作用,影响分解速率和稳定因子。在森林和草原上,降水增加增加了分解速率(K),但同时也是垫料稳定因子(S)。然而,在森林中,增加了土壤的C/N比增加了分解速率和垃圾稳定,而在草原中,C/N比率较高会导致相反的影响。此外,土壤pH和n还积极影响了脱粒率,但是对于这些因素,生态系统类型之间没有差异。我们的结果表明,土壤c浮水被复杂的位点依赖性和与现场独立的环境因素改变,并且增加的生态系统木质膜片将显着改变c的流量,这可能会在短期内增加分解速率,但同时增加了稳定稳定的垃圾堆垃圾的抑制因素。
diatom-Diatom碰撞的量子古典(QC)方法是由G.D.计费[6],被证明是准确,有效的,可以获得涉及振动能传递的重型突击过程的横截面和速率系数。该方法的关键特征是,振动的自由度是机械处理的,而其他自由度(翻译和旋转运动)则经过经典处理。为了以自洽的方式处理整个系统,量子机械的自由度必须在周围经典动作的影响下正确地发展。反过来,经典的自由度必须对量子过渡做出正确的反应。在目前的两个双原子分子的量子古典方法中,振动和旋转振动耦合通过紧密耦合方程式对量子进行量子处理。首先,总振动波函数是根据旋转扰动的摩尔斯波波函数ϕ v 1(r 1,t)ϕ v 2(r 2,t)扩展的:
我们引入了一种基于在随机两部分图上解决约束满意度问题(CSP)的生成随机多量稳定器代码的方法。此框架使我们能够在CSP中同时执行X/z平衡,X/z平衡,有限速度,稀疏性和最大程度的结合,然后我们可以在数值上解决。使用状态的CSP求解器,我们获得了令人信服的证据,证明存在着满意的阈值。此外,可满足相的范围随量子的数量而增加。在该阶段,发现稀疏代码成为一个简单的问题。此外,我们观察到在满足相的相中发现的稀疏代码实际上实现了擦除噪声的通道容量。我们的申请表明,中间大小的有限速率稀疏量子代码很容易找到,同时还展示了一种具有自定义properties的良好代码的功能可靠方法。因此,我们建立了一个完整且可自定义的管道,以进行随机Quantum code Discovery。
1) 在研究范围内,抗拉强度和屈服强度随应变速率增加而增加。2) 屈服强度的变化趋势与抗拉强度非常相似。3) 延展性随应变速率增加而降低。4) 应变敏感性m对于Sn-9Zn-0.2Ag-0.6Sb为0.0831,对于Sn-9Zn-0.2Ag-0.8Sb为0.1455,对于Sn-9Zn-0.6Ag-0.2Sb为0.1274,对于Sn-9Zn-0.8Ag-0.2Sb为0.1346。5) 所有m值都小于0.3,因此本文研究的无铅焊料均不会出现超塑性行为。6) 需要进一步研究这些焊料合金在不同温度和应变速率下的拉伸性能,以更详细地了解热力学硬化响应。
疲劳被称为工程结构中失败的主要模式之一,通常会经受循环载荷条件。在工程结构中采用的Al-loys的机械和断裂特性可能会受到严重环境条件(例如恶劣的腐蚀性环境)的运行的影响,从而导致其使用寿命期间结构和组件的成熟失败[1]。因此,为了实现延长寿命,必须提高工程结构的疲劳性能。从历史上看,许多属性和表面处理技术已被开发并实施,以促进工业应用中的疲劳寿命。正在磨削机械技术的一个例子,该技术被广泛用于在各种工业应用中获得延长的疲劳生活。使用这种技术,应消除应力浓度区域,尤其是在焊缝上,以降低局部应力水平,从而增加疲劳寿命[2]。除了含有的技术外,还可以隔离或与机械设计修改一起隔离或结合使用各种表面处理方法。在广泛的工业应用中实施的最著名的表面处理技术是对[3 E 7]的射击[3 E 7],激光冲击式[8 E 10],深冷滚动[11 E 15]和Vibro Peening [16]。但是,不同表面处理技术的复杂性,成本,所需的穿透深度和效率在很大程度上取决于材料特性和操作负载条件。表面处理方法背后的一般思想是引入一个保护性层的压缩残留应力层,该层将减速工程组件或结构的外表面的裂纹启动和传播。此外,在表面处理过程中应变硬化和残留应力的形成将改变冶金特征,因此需要对微结构变化对随后的疲劳行为的影响进行充分研究,并在给定的材料和加载条件下进行理解[1]。已发现适用于制造大型组件和结构的金属添加剂制造(AM)的有效的定向能量沉积(DED)工艺是电线弧添加剂制造(WAAM)技术。这种DED制造技术也可以用于重建和维修目的,可产生近乎形状的组件,而无需进行编组工具或模具。waam提供了巨大的潜力,可以节省成本,交货时间和材料浪费,并提高材料效率和提高的综合性能[17,18]。然而,基于焊接的制造过程引入了残留的压力和折磨,会影响疲劳寿命,并可能促进WAAM内置部分的裂纹启动和传播过程[19 E 21]。另外,WAAM过程的另一个缺点是明显的表面波动,可以在加性