摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。
摘要 在本文中,我们引入了内在非局域性和量子内在非局域性作为贝尔非局域性的量化器,并证明它们在局部操作和共享随机性下满足某些理想性质,例如忠实性、凸性和单调性。然后,我们证明内在非局域性是使用以相关性 p 为特征的设备执行的任何设备独立协议的密钥协商容量的上限,而量子内在非局域性是从底层量子模型产生的相关性的相同容量的上限。我们还证明内在可控性是忠实的,它是使用以组合 ˆ r 为特征的设备执行的任何单边设备独立协议的密钥协商容量的上限。最后,我们证明量子内在非局域性受内在可控性的约束。
摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。
假设线性弹性断裂力学,无论机体几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展试验的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹扩展速度快于 C(T) 试样中的裂纹。已经研究并量化了这些观察到的差异。对于疲劳裂纹扩展试验,在 R = 0 的脉动拉伸下加载的开裂 Kb 试样的裂纹扩展速度比 C(T) 试样中的裂纹快 3.6 倍,这是在所有试验温度下和材料 Ti-64、Ti-6242 和 IN-718 的平均值。已经使用锻造的 Ti-64 和 IN-718 制成的 C(T) 试样进行了新的疲劳裂纹扩展试验,并将其与锻件制成的 Kb 试样的疲劳裂纹扩展速度进行了比较。发现锻件制成的 Kb 和 C(T) 试样的疲劳裂纹扩展速率差异非常小。
假设线性弹性断裂力学,无论物体的几何形状如何,具有相同应力强度因子的两个裂纹将以相同的速率扩展。然而,在 GKN Aerospace,对铸件制成的 C(T) 和 Kb 试样进行疲劳裂纹扩展测试的结果显示,疲劳裂纹扩展速率存在明显差异,其中 Kb 试样中的裂纹比 C(T) 试样中的裂纹扩展得更快。这些观察到的差异已经过研究和量化。对于疲劳裂纹扩展测试,在 R = 0 的脉动拉伸下加载的破裂 Kb 试样的裂纹扩展速度是 C(T) 试样中裂纹的 3.6 倍,在所有测试温度和材料 Ti-64、Ti-6242 和 IN-718 上取平均值。使用锻造的 Ti-64 和 IN-718 制成的 C(T) 样品进行了新的疲劳裂纹扩展测试,并与锻件制成的 Kb 样品的疲劳裂纹扩展率进行了比较。发现锻件制成的 Kb 和 C(T) 样品之间的疲劳裂纹扩展率差异非常小。
摘要 明确约束的断层滑动速率对于理解断层系统内的应变分配和相关的地震危险性非常重要。海原断层是青藏高原东北缘一条重要的活跃走滑断层,其晚更新世的滑动速率一直存在争议。Lasserre 等人 (1999) 的前期研究表明滑动速率为 12 ± 4 毫米/年,高于最近通过大地测量确定的相邻断层段的滑动速率。我们利用位于松山村北部的两个站点的新高分辨率机载光探测和测距数据重新分析和评估了滑动速率。基于这些数据,我们修改了现场映射的偏移约束。在马家湾站点,我们记录到 T1/T2 阶地立面顶部左旋位移分别为 130 ± 10 米,底部左旋位移为 93 ± 15 米。在玄马湾遗址,T4/T1′阶地立面的偏移量更新为 68 +3 / −10 米。结合新的地质年代学数据,我们评估 T2 的废弃年龄为 26.0 ± 4.5 ka,T1 的废弃年龄为 9,445 ± 30 年。这些数据表明,基于上部阶地和下部阶地重建,自~26 ka 以来的滑动速率在 5.0 +1.5 / −1.1 和 8.9 +0.5 / −1.3 毫米/年之间。我们的重新评估支持了藏北地区明显的滑动速率差异可能存在系统性偏差,这是由于使用下部阶地重建来解释偏移年龄造成的。
热导率和辐射特性的预测至关重要。然而,计算声子散射,尤其是对于四声子散射,可能非常昂贵,并且在考虑四光子散射后,硅的导热率显着较低,而在文献中没有融合。在这里,我们提出了一种使用最大似然估计的少量散射过程样本来估算散射速率的方法。散射速率和相关导热率和辐射特性的计算大大加速了三到四个数量级。这使我们能够使用32×32×32的前所未有的Q -MENS(在相互空间中离散的网格)来计算硅的四频散射并实现收敛的导热率值,从而同意实验更好。我们方法的准确性和效率使其非常适合对热和光学应用的材料进行高通量筛选。
发表的纸张后版本发表于https://doi.org/10.1016/j.foodres.2023.113292。内容与已发表的论文相同,但没有发布者的最终排版。
在过去的几十年中,南极冰盖对海平面上升的贡献一直在增加,预计这种增加会随着温室气体排放的增加而持续(Fox-Kemper等人,2021年)。大部分质量损失发生在冰盖的边缘,通过从接地冰盖到海洋的冰块流动,主要是在南极西部(Khazendar等,2016; Mouginot等,2014; Mouginot et al。,2014; Rignot et al。这是因为冰盖边缘的浮冰搁架(通常是支撑冰流的支撑)迅速变薄并由于其底部的海洋引起的融化而撤退(Adusumilli等,2020; Paolo等,2015; Rignot et al。,2013)。在某些基岩配置中,增加了海洋诱导的熔体甚至会触发海洋冰盖不稳定性(Gudmundsson等,2012; Schoof,2007; Weertman,2007; Weertman,1974),这有可能强烈增加南极质量损失,在一个世纪以下的时间范围内(Fox-Kemper等人,20221年)。这使海洋引起的子架融化或基底融化是未来海平面上升的未来预测的主要不确定性之一。
本研究旨在通过失重法使用麒麟叶提取物 (Chromolaena odorata) 测定 ASTM A36 钢在海水介质中的抑制效率和腐蚀速率。添加的抑制剂为麒麟叶提取物,浓度变化为100 ppm、200 ppm、300 ppm、400 ppm 和 500 ppm,喷洒在样品表面,然后浸泡7天。采用重量损失法计算腐蚀速率。研究结果表明,麒麟叶提取物能有效抑制腐蚀速度。当抑制剂添加浓度为400 ppm时,样品的腐蚀速率值最小,为2.053 ppm。同时,在相同缓蚀剂浓度下也获得了最高的缓蚀剂效率,为87%。抑制剂的添加也被证明会影响样品表面的微观结构,因为抑制剂经过吸附并在样品表面形成一层薄层,使薄层成为一道屏障,防止腐蚀环境与样品直接接触,从而抑制腐蚀的速度。关键词:腐蚀率、麒麟叶提取物、天然抑制剂、减肥方法。