在吉祥的 Paush Purnima 日子,大壶节开始了,超过 1.65 亿人在圣河中沐浴,恒河、亚穆纳河和神秘的萨拉斯瓦蒂河的圣河岸人头攒动,热闹非凡。来自全国各地的朝圣者心中怀揣信仰,手中拿着祭品,齐聚一堂,进行第一次圣浴。空中回荡着“Har Har Gange”和“Jai Shri Ram”的颂歌,营造出一种神圣的热情氛围。朝圣者们从午夜开始冒着刺骨的寒冷抵达桑加姆,他们的虔诚显而易见。他们裹着羊毛衣,头上顶着行李,在他们坚定不移的信仰面前,行李的重量似乎微不足道。 “当我在这里畅游时,感觉就像灵魂上的重担被卸下了,”来自拉贾斯坦邦的 65 岁朝圣者 Savitri Devi 从水中浮出水面,露出了平静的微笑。身着传统服饰的人们挤满了河岸,桑加姆河的河岸变成了五彩缤纷的景象。孩子们在浅水中玩耍,他们的笑声与咒语交织在一起,而老人则坐着祈祷,嘴里低声吟唱着神圣的赞美诗。年轻人的热情尤其引人注目,许多人用手机捕捉这些瞬间并立即分享。“我们很自豪能来到这里,与世界一起庆祝我们的文化,”来自阿拉哈巴德的 22 岁 Aniket Mishra 站在水边,手拿自拍杆说道。精神能量与大自然的恩赐相得益彰,前一天晚上还下了一场小雨
在吉祥的 Paush Purnima 日子,大壶节开始了,超过 1.65 亿人在圣河中沐浴,恒河、亚穆纳河和神秘的萨拉斯瓦蒂河的圣河岸人头攒动,热闹非凡。来自全国各地的朝圣者心中怀揣信仰,手中拿着祭品,齐聚一堂,进行第一次圣浴。空中回荡着“Har Har Gange”和“Jai Shri Ram”的颂歌,营造出一种神圣的热情氛围。朝圣者们从午夜开始冒着刺骨的寒冷抵达桑加姆,他们的虔诚显而易见。他们裹着羊毛衣,头上顶着行李,在他们坚定不移的信仰面前,行李的重量似乎微不足道。 “当我在这里畅游时,感觉就像灵魂上的重担被卸下了,”来自拉贾斯坦邦的 65 岁朝圣者 Savitri Devi 从水中浮出水面,露出了平静的微笑。身着传统服饰的人们挤满了河岸,桑加姆河的河岸变成了五彩缤纷的景象。孩子们在浅水中玩耍,他们的笑声与咒语交织在一起,而老人则坐着祈祷,嘴里低声吟唱着神圣的赞美诗。年轻人的热情尤其引人注目,许多人用手机捕捉这些瞬间并立即分享。“我们很自豪能来到这里,与世界一起庆祝我们的文化,”来自阿拉哈巴德的 22 岁 Aniket Mishra 站在水边,手拿自拍杆说道。精神能量与大自然的恩赐相得益彰,前一天晚上还下了一场小雨
回头看。之前很多人都尝试过,但直到19世纪末才实现了首次载人飞行。这要归功于德国工程师奥托·李连塔尔 (Otto Lilienthal),他建造了一种类似于悬挂式滑翔机的结构,并于 1891 年 9 月成功地用它在空中飞行了 15 米的距离。李林塔尔的成功实验引起了莱特兄弟的注意,他们在工作中使用了李林塔尔在测量机翼轮廓升力时所做的计算。[1] 莱特兄弟于 1899 年开始对各种飞机进行实验,并最终于 1903 年制造出他们的第一架飞机。1903年12月14日,威尔伯第一次尝试搭乘它起飞,但由于强风,他只能在空中停留三分半钟,飞机也受损。幸运的是,只需要进行小修,他们于 1903 年 12 月 17 日再次尝试。当时,奥维尔登上了飞行员的位置,凭借37米长12秒的飞行,他和兄弟的名字永远写在了世界历史上。[2] 匈牙利第一架机动飞行器是由法国人路易斯·布莱里奥(Louis Bleriot)制造的。布莱里奥于 1909 年 10 月 15 日应匈牙利航空俱乐部的邀请抵达布达佩斯,两天后在 20 万人面前从乌尔尼乌特附近的基斯拉科斯军事训练场起飞。[3]
摘要:已经开发了大量的研究,目的是协助决策者为当前和未来的建筑类型的改造设定雄心勃勃,可实现的环境目标,以提高能源效率,并创建有效的改造策略以实现这些目标。这项研究的目的是进行全面的研究,以确定建筑类型和可持续性之间的关系,并特别着重于改造,并尝试在最有效的节能策略中识别改造出各种类型建筑物的研究差距。在这方面,本研究进行了系统的文献综述(SLR)利用人工智能(AI)和自然语言处理(NLP)。选择和审查了六十个相关论文,建立了全面的搜索计划。该研究强调了改进建筑物的能源效率的改造策略,并讨论了当前实践在物理和技术发展方面的局限性,例如根据建筑物的类型和环境因素的类型,例如建筑物改造评估。为了解决这些局限性,本研究提出了一种未来研究的方法,重点是深入建筑物分类,开发量身定制的改造替代方案以及建立自适应解决方案框架。该框架与不同的类型相吻合,适应不断变化的环境,并增强了长期的节能性能。它提出了详细的建筑物分类,以了解建筑物的物理特征,技术和能源需求之间的互连。此外,它建议为各种建筑类型定制改造解决方案,并为不断变化的条件创建适应性的框架。使用定性研究,文献综述,定量分析和案例研究,该方法可确保研究信誉。原型制作被用来完善过程,考虑建筑物类型和环境因素。
芯片尺度多模光力系统具有相对于单模对应物的传感,计量和量子技术具有独特的好处。插槽模式光力晶体可实现单个光学腔的侧带分辨率和两个微波频率机械模式的大型光学机械耦合。仍然,以前的实现仅限于纳米束几何形状,在超高温度下,其有效的量子合作受到其低热电导率的限制。在这项工作中,我们设计和实验表明了二维机械 - 光学机械(MOM)平台,该平台可分散地构造出缓慢的光子引导的光子光子 - 晶波导模式和两个慢速〜7 GHz语音电线模式在物理上不同区域中定位于物理不同的区域。我们首先在长波导部分中展示了光学机械相互作用,揭示低于800 m/s的声学群速度,然后转到具有量身定制的机械频率差的模式差距绝热异质结构腔。通过光力光谱法,我们证明了光学质量因子Q〜10 5,真空磁力耦合速率,G o /2π,1.5 MHz为1.5 MHz,以及除了单模图片以外的动态反作用效应。在较大的功率和足够的激光腔内失调时,我们证明了涉及单个机械模式的再生光学振荡振荡,通过调制输入激光驱动器以其频率差的调制,将两种机械模式扩展到两种机械模式。这项工作构成了对工程MOM系统的重要进步,该系统几乎是退化的机械模式,这是混合多部分量子系统的一部分。
抽象电子组件使用具有不同机械和热性能的各种聚合物材料,以在恶劣的使用环境中提供保护。然而,机械性能的可变性,例如热膨胀系数和弹性模量,通过对长期对电子设备可靠性产生的不确定性引入不确定性来影响材料选择过程。通常,主要的可靠性问题是焊接关节疲劳,其造成了电子组件的大量故障。因此,在预测可靠性时,有必要了解聚合物封装(涂料,盆栽和底部填充物)对焊接接头的影响。已经表明,由于聚合物封装的热膨胀,焊料中存在拉伸应力时,疲劳寿命大大降低。将拉伸应力受试者焊接到环状多轴应力状态中,发现比常规的循环剪切负荷更具破坏性。为了理解其对微电子焊接关节的疲劳寿命的影响,必须隔离拉伸应力成分。因此,为了使无PB的焊接接头构造出独特的标本,以使其符合波动的拉伸应力条件。本文介绍了热机械拉伸疲劳标本的构建和验证。热循环范围与盆栽膨胀特性相匹配,以改变焊接接头施加的拉伸应力的大小。焊接接头几何形状的设计具有比例因子,该比例因子与BGA和QFN焊接接头有关,同时保持简化的应力状态。FEA建模以观察热膨胀期间焊接接头的应力应变行为,以了解各种盆栽材料特性。焊接接头中轴向应力的大小显示出依赖于热膨胀和模量的系数以及热循环的峰值温度。由于样品的热循环辅助,由于盆栽材料的热膨胀而具有各种膨胀性能,焊料接头经历的拉伸应力的大小与焊接的幅度相关联,并为带有封装的电子包装中焊料关节的低周期疲劳寿命提供了新的见解。
安德鲁·皮门塔尔 (Andrew Pimental),公园和娱乐部主任 伊根市 3830 Pilot Knob Rd Eagan, MN 55122 电话:651-675-5506 电子邮件:Andrew.pimental@eaganmn.gov 意见必须通过电子邮件发送。 也可以将提案的一份 PDF 副本和任何相关附件发送至上述邮寄地址。 截止日期:2024 年 10 月 25 日下午 1:00 前 预计授予合同:2024 年 12 月 16 日 目标交付成果截止日期:2025 年 11 月 1 日 接受提案内容 如果签订合同,本 RFP 和提案的内容将成为合同义务。 如果顾问未能履行这些义务,可能会导致取消授予。 提案中的所有信息均须根据明尼苏达州法规第 13 章——《明尼苏达州政府数据实践法》的规定进行披露。第 2 部分:项目概述和目的伊根市 (“城市”) 很自豪拥有一个公园系统,该系统为我们的社区创造了平衡且种类繁多的室内和室外娱乐体验,适合所有年龄段。我们的系统不仅全面,而且由超过 164 英里的人行道和小径连接。拥有各种不同的小公园、社区公园和宽阔的自然区域以及大型娱乐设施,使城市营造出充满活力、健康的城市氛围,同时保持了与自然和户外活动的个人体验。城市希望继续为社区和游客提供这一基础,并培养公民的乐趣、安全和自豪感。本 RFP 概述了更新城市公园系统总体规划 (“规划”) 所需的专业服务的性质和范围。规划必须考虑并解决以下问题:
Atul Varadhachary MD PhD Radiomer Therapeutics, Inc 首席执行官 采访人:Lynn Fosse,高级编辑 CEOCFO 杂志 CEOCFO:Varadhachary 博士,Radiomer Therapeutics 背后的理念是什么? Varadhachary 博士:Radiomer Therapeutics 正在基于我们专有的靶向平台开发一类新型靶向放射性药物。 背景介绍一下,靶向放射性药物,也称为放射性配体疗法 (RLT),是一类发展迅速的靶向抗癌药物。RLT 由一种附着于“配体”或“载体”的放射性同位素组成。 当将 RLT 注射到患者体内时,配体作为靶向剂,优先附着于癌细胞。 然后这些癌细胞被放射性同位素的辐射杀死。 RLT 有望具有更强的抗癌活性,包括对抗可能对其他疗法没有反应的癌症,而且副作用更少。 我们的 Radiomer 有望成为特别有效的 RLT。有效 RLT 的一个关键组成部分是靶向配体,我们的独特优势在于我们强大的配体发现平台。我们的配体是一种新型结合剂,可以靶向多种癌症。我们已经针对一些最常见癌症的靶点创建了强大的配体,包括乳腺癌、肺癌、结直肠癌、前列腺癌和胰腺癌。CEOCFO:您的方法有什么不同、更简单、更快速、更适用于其设计目的?Varadhachary 博士:放射聚合物表现出有吸引力的 RLT 特性,包括与癌细胞的特异性和强结合以及快速从体内消除,以最大限度地减少正常组织对辐射的暴露。放射聚合物还可以结合放射治疗中常用的所有放射性同位素。最重要的是,Radiomer Therapeutics 可以在 1-2 个月内制造出针对新型癌症靶点的配体,比其他可用技术快得多。这使我们能够在不到一年的时间内将新型放射聚合物用于癌症患者的测试,这至关重要,尤其是对于没有充裕时间的晚期癌症患者而言。 CEOCFO:这个想法是怎么产生的?
Smith Engineering 拥有多种致力于打造更可持续世界的研究项目,从而营造出一种激励合作的环境。化学工程系的研究人员致力于研究超级电容器和电池的 2D 材料、电化学碳转化、可持续电解过程以及用于能量转换和存储的下一代材料。其他部门的相关研究包括但不限于电池回收和关键材料(采矿工程)、电动汽车和储能系统的电力电子(能源和电力电子研究中心、电气和计算机工程)以及先进材料开发的特性和建模(机械和材料工程)。疫苗接种要求 2022 年 5 月 1 日之前,大学要求所有学生、教师、工作人员和访客(包括承包商)申报他们的 COVID-19 疫苗接种状况,并提供他们已完全接种疫苗或拥有经批准的住宿以参与面对面大学活动的证明。这些要求自 2022 年 5 月 1 日起暂停,但大学可能会随时恢复这些要求。院系概况女王大学是加拿大领先的研究型大学之一。化学工程系是一个中型院系,拥有 23 名教员,提供化学工程和工程化学本科课程,目前有 250 多名本科生就读于 2 至 4 年级,研究生人数通常为 80-100 人。该系的研究优势包括生物医学工程;大分子科学与技术;过程分析、优化与控制;可持续能源、过程和产品;环境修复。该系通过与 Dunin-Deshpande 女王创新中心的密切合作,非常重视跨学科教育,并与女王大学的多个多学科中心建立了联系,包括:健康创新中心、加拿大绿色中心 (www.greencentrecanada.com)、创新园区 (www.innovationpark.ca)、Beaty 水研究中心、Ingenuity Labs 和女王能源与电力电子研究中心 (ePOWER) (www.queensu.ca/epower)。我们瞬息万变的世界带来了前所未有的机遇和重大挑战。史密斯工程正在改变工程教育的面貌,因此未来的工程师可以成为应对复杂和多学科全球问题的领导者。这种新的工程模式
机电工程中的人工智能:ESPRIT 模型 Mohamed Hedi Riahi、Nadia Ajailia ESPRIT 工程学院 摘要 近十年来,人工智能 (AI) 蓬勃发展,现已涵盖自动化、电力和维护等机电领域,为此我们引入了 ESPRIT 方法。该方法强调工程师需要丰富技能组合,以适应不断变化的环境。这种教育模式将 AI 模块整合到机电工程课程中,符合 CDIO 标准,以培养广泛的 AI 能力。该课程经过精心设计,从基础知识进阶到高级应用和评估,采用主动学习策略提高学生的技术、解决问题和专业技能,最终鼓励全面掌握工程领域的 AI。本文介绍了 ESPRIT 方法,这是一种专为让机电工程师具备必要的 AI 能力而量身定制的教学范式。ESPRIT 机电工程课程中专用 AI 模块的整合符合 CDIO 标准,标志着工程教育取得了重大进步。我们的教学贡献有三方面,涵盖了三年内 AI 模块的设计、执行和评估。该课程采用主动学习策略(标准 8)让学生沉浸在 AI 问题解决中,营造出一种实践参与的环境。课程以结构化的方式展开(标准 3),从第三年的 AI 发现阶段开始,学生将熟悉 Python、AI 库和基础 AI 概念,包括基本分类和回归算法。第二阶段是第四年,重点是应用和强化所获得的知识,重点是 AI 项目的生命周期。学生通过开展一个遵循 AI 项目惯例的小型项目来结束这一阶段。第五年的最后阶段强调实际应用和掌握,最终在 NVIDIA DLI 研讨会上结束,学生有机会获得预测性维护 AI 证书。最后,本文对这种教学方法进行了批判性分析,强调了其实用应用和与学生能力相符的节奏良好的学习轨迹。尽管如此,它强调了在 AI 的理论和实践方面实现对称平衡的必要性,以充分利用其在机电工程中的潜力。关键词