我们提出了一个半监督域自适应框架,用于从不同的图像模态中分割脑血管。尽管可用的脑血管成像技术范围很广,但现有的最先进的方法只关注单一模态。这可能导致显著的分布变化,从而对跨模态的泛化产生负面影响。通过依赖带注释的血管造影和有限数量带注释的静脉造影,我们的框架完成了图像到图像的转换和语义分割,利用解开的、语义丰富的潜在空间来表示异构数据并执行从源域到目标域的图像级自适应。此外,我们降低了基于循环的架构的典型复杂性并最大限度地减少了对抗训练的使用,这使我们能够构建一个具有稳定训练的高效、直观的模型。我们在磁共振血管造影和静脉造影上评估了我们的方法。在源域中实现最佳性能的同时,我们的方法在目标域中的 Dice 得分系数仅低 8.9%,凸显了其在不同模态下进行稳健脑血管图像分割的巨大潜力。
此预印本版的版权持有人于2023年3月9日发布。 https://doi.org/10.1101/2023.03.07.23286862 doi:medrxiv preprint
Portosystemic分类(PSS)是异常血管,允许血液绕过肝脏,由于缺乏正常的肝代谢,导致各种临床症状。成像模态,例如计算机断层扫描(CTA)和磁共振成像(MRI)对于PSS的诊断和表征至关重要。九只动物,临床表现暗示了CPS,接受了CTA和脑MRI。使用32个检测器CT单元进行CTA,并在1.5 Tesla Siemens Magnetom Avanto系统上进行MRI扫描。诊断出六例肝外门体分流器(EPS)和三个肝内分流器(IHPS)。MRI发现包括脑萎缩和白质超强度,与分流的类型相关。该研究证明了MRI在识别与CPS相关的特定大脑变化方面的价值。高级成像技术对于准确诊断CPS是必不可少的。该研究的发现加强了进一步研究的必要性,更大的队列以在CPSS类型和大脑MRI变化之间建立更强的相关性,旨在增强受影响动物的临床管理。
数字减影血管造影 (DSA) 存在与灰度图像质量相关的局限性,需要逐张检查才能观察到时间差异。本文通过介绍灌注血管造影作为定量分析框架以及 DSA 灌注参数和延迟的可视化来解决这些局限性。它的实用性可以归因于其良好的时空分辨率,并且不易与其他采集技术(如磁共振成像和计算机断层扫描)兼容。3 二维组织灌注血管造影图像是通过集成到计算机中的软件获得的,该软件允许基于 DSA 的二维功能信息。它为干预者提供了一种工具,可以实时测量所执行治疗的影响并帮助确定完成治疗的正确时间。从这些观察中,本文的总体目标是描述可以从该研究中提取的灌注参数的实用性,并以彩色编码图像显示,神经科医生、神经外科医生和神经介入放射科医生可以轻松解释。
摘要:纳米级表面形貌是调节细胞材料相互作用,显着影响细胞和核形态及其功能的有效方法。然而,纳米形态学的机械和几何微环境引起的细胞代谢的适应性变化仍然很少了解。在这项研究中,我们通过使用无标签的多模式光学成像平台研究了在工程纳米乳木基质上培养的细胞中的代谢活性。这个多模式成像平台集成了两个光子荧光(TPF)和刺激的拉曼散射(SRS)显微镜,使我们能够在亚细胞尺度上直接可视化和量化3D细胞的代谢活性。我们发现,与平面表面相比,纳米木结构显着降低了细胞扩散面积和循环。纳米氏诱导的机械提示显着调节细胞代谢活性,其纳米几何形状的变化进一步影响了这些代谢过程。细胞在纳米圆骨上培养的细胞表现出降低的氧化应激,蛋白质和脂质合成降低以及脂质不饱和度降低。分层聚类还表明,与直径变化相比,纳米氏菌的音高差异对细胞代谢活性具有更大的影响。通过利用纳米阵列的独特代谢作用,可以制定更有效的策略来指导细胞的命运,增强基于细胞的疗法的性能并创建再生医学应用。这些见解增强了我们对如何使用工程纳米仪来控制细胞代谢的理解,为设计高级细胞培养平台提供了可能性的可能性,这些平台可以调节细胞行为和模仿天然细胞环境并优化基于细胞的应用程序。关键字:纳米形相图,纳米曲线,细胞代谢,代谢动力学,多模式成像,多元分析,无监督聚类■简介
抽象背景血管造影参数可以促进冠状动脉病变的风险分层,但在预测未来心肌梗死(MI)方面仍然不足。我们的目标是比较人类,血管造影参数和深度学习(DL)的能力,以预测基线不显着的CAD患者中未来MI的病变。我们回顾性地包括对MI进行侵入性冠状动脉造影(ICA)的患者,其中5年内已经进行了先前的血管造影。比较了人类视觉评估,直径狭窄,区域狭窄,定量流量比(QFR)和DL预测未来罪魁祸首(FCL)的能力。总共分析了746个FCL和非硫磺病变(NCL)的ICA图像。每种模式的预测模型是在训练集中在测试集中验证之前开发的。dl表现出最佳的预测性能,曲线下的面积为0.81的面积为0.81。dl表现出显着的净重新分类改进(NRI),与直径狭窄相比,NRI呈阳性。在所有模型中,DL表现出最高的精度(0.78),其次是QFR(0.70)和区域狭窄(0.68)。基于人类视觉评估和直径狭窄的预测的精度最低(0.58)。现在需要进行较大的研究来确认这一发现。在这项可行性研究中的结论,DL在预测FCL中的表现优于人类的视觉评估,并确定了血管造影参数。
无论在日常医疗中采用何种方法诊断和治疗此类患者,缺血性心脏病都会给医疗系统带来沉重的负担。本文描述了一项研究的方案,该研究的主要目的是开发、实施和测试一种人工智能算法和基于云的平台,使用冠状动脉造影图像进行全自动 PCI 指导。我们建议利用多种基于人工智能的模型进行三维冠状动脉解剖重建并评估功能(PCI 后 FFR 计算),以制定一份详尽的报告,描述和激励最佳 PCI 策略选择。所有相关的人工智能模型输出(解剖和功能评估——PCI 前后)都通过云平台呈现给临床医生,然后临床医生可以做出最佳治疗决定。医生将获得针对同一病例的多种方案和治疗可能性,以便实时评估最合适的 PCI 策略规划和后续行动。人工智能算法和基于云的 PCI 选择工作流程将在一项试点临床研究中得到验证和确认,其中包括前瞻性地将人工智能服务和结果与注释和侵入性测量进行比较。
简介:起搏器植入通常在世界范围内广泛用于各种心脏病。使用静脉指导对于穿刺部位的操作员非常重要,并防止并发症,例如气胸。这项研究的目的是确定静脉曲张对预防并发症的影响,并比较有和没有静脉引导的患者之间的气胸速率。方法:在2012年至2022年之间,总共有539例将起搏器植入我们的诊所中的患者。起搏器类型,根据所使用的铅数量,起搏器植入的诊断,病龄,性别,伴随慢性阻塞性肺部疾病(COPD),除颤器电池的存在和铅指导,并评估了静脉造影指导,并分析了它们对Pneumothorax的并发症的贡献。结果:在我们的研究中发现气胸发育的发生率为1.3%。静脉指导被发现针对气胸具有明显的保护性,因为患有气胸的患者组由不以高率进行静脉造影的病人组成。已经确定,在开发肺炎的患者组中,在18-65岁之间的患者中,女性性别的患者比例很高,没有伴随COPD,并插入了2个铅,并带有2个铅,并带有可植入的心脏逆转除颤器(ICD)植入(ICD)植入(单个/双线铅)。我们的研究表明,起搏器植入中的常规静脉造影是一种保护患者免受肺炎和铅骨折的有效方法。讨论和结论:我们的研究表明,起搏器植入过程中的常规静脉造影是一种保护患者免受气胸的有效方法。由于静脉结构的盲点刺穿会增加发生并发症的风险,因此可以在起搏器植入中常规使用静脉指导。关键字:腋静脉穿刺;起搏器;锁骨下静脉穿刺;静脉。
多媒体数据,例如图像,文本,文件或带有数据加密的视频。图像模拟是一种将图像隐藏在另一个图像中的技术。在图像密封造影中,封面图像被操纵,以使隐藏的数据看不见,这不会使其可疑,例如在加密中。相反,使用切解来检测任何秘密。图像中的消息并提取隐藏的信息[1]。在提出了一种略有不同的方法中,考虑了样式图像以及内部信息和掩护图像。生成的支撑图像被转换为给出的样式图像作为输入。揭示网络用于解码从Stego图像创建的秘密信息。与其他方法一样,使用基于VGG的自动编码器架构进行了任意调整秘密数据的大小,样式图像是通过自适应示例[2]完成的。该通道是因为CR和CB通道中的所有语义和颜色信息。此外,为了将有效载荷减少三分之二,隐藏的图像将转换为灰度图像格式。y通道Haltone Secret Image被馈送到编码器 - 模块网络以生成支撑图像。源图像是Y通道与CR和CB通道结合使用,以在YCRCB颜色空间中创建封面图像括号图像。为了编码隐藏的图像,Y通道DE Brace图像被馈回启示网络,以输出灰度刻度隐藏的图像。另外,将两种不同的变体用于生殖模型 - 基本和残留模型[3]。提出了k-lsb方法,其中k最小位被秘密消息替换。使用加密和隐肌的结合,其中封面图像的LSB被秘密图像的最重要位取代。使用伪随机数生成器来选择像素,并且每次旋转时都会对键进行加密。Stega分析使用熵过滤器检测并揭示秘密图像[4]。LSB方法也用于在视频中隐藏秘密信息笑话。视频是称为视频帧的图像序列。每个视频都被切成框架,秘密信息的二进制位隐藏在视频帧的LSB中。LSB替代方法和视频的基本形式结合了Huffman编码和LSB替代方法。另一种有趣的方法是将音频与录像带一起使用以改善隐藏性[5]。