特殊人群: - 对于已有精神病、躁郁症或抑郁症的患者,由于担心可能诱发混合/躁狂发作或加剧行为紊乱和思维障碍症状,可能优先使用除托莫西汀以外的非兴奋剂药物。 - 对于抽搐或图雷特综合征患者、有药物滥用史的患者或焦虑症患者,优先使用非兴奋剂药物。 - 不建议有心脏病的患者使用兴奋剂和托莫西汀,因为这可能会使他们更容易受到这些药物的拟交感神经作用的影响。
兴奋剂,也称为精神兴奋剂,被认为是 ADHD 的主要药物疗法。8,9 它们刺激大脑中的特定细胞产生更多的神经递质,如多巴胺和去甲肾上腺素。8 用于治疗成人 ADHD 的两种常见兴奋剂是苯丙胺和哌甲酯及其衍生物。8,9 它们可以是短效的,也可以是长效的。8 这些药物起效迅速,大约 30 到 45 分钟即可见效。短效兴奋剂的效果持续 3 到 6 小时,长效兴奋剂的效果持续 8 到 16 小时。8 兴奋剂治疗 ADHD 最常见的副作用是心率加快、血压升高、食欲不振和睡眠困难等。8,9 兴奋剂有依赖性、滥用和转移的可能性。8
研究论文《动作捕捉在现代动画中的重要性》的目的是全面探索和分析动作捕捉技术在当代动画中的作用。本文旨在研究动作捕捉在塑造动画格局方面的重要性,重点关注其对现实主义、角色动画、故事叙述和动画技术整体发展的影响。它可能深入研究动作捕捉的技术方面、创新和应用,强调其对创造逼真的角色、高效的动画工作流程以及真人与计算机生成元素的无缝集成的贡献。此外,研究可能涉及动作捕捉的跨学科性质,探索其在娱乐以外的领域(例如医疗保健、虚拟现实和人机交互)的应用。总体目标是深入了解动作捕捉如何成为现代动画中的变革工具,影响动画行业的艺术和技术方面。
acinetobacter(A。)鲍曼尼(Baumannii)已成为一种难以治疗的医疗性细菌性人类病原体。A。Baumannii应在“一种健康”方法下处理,其在人类,动物和环境环境中的监视对于理解其合理的传播动态而言至关重要。准确鉴定鲍曼尼a,其克隆复合物和序列类型对于理解流行病学分布,进化关系和传播动力学很重要。广泛的基因分型技术用于分化calcoaceticus-baumannii(ACB)复合物。但是,没有用于快速测定的单一直接基因型方法。当前,存在两个多焦点序列分型(MLST)牛津和牧场方案;尽管被认为是序列键入的黄金标准,但协调方案并不是一个简单的过程。基于基于基因组测序的核心基因组多焦点序列(CGMLST)和核心单核苷酸多态性(CGSNP)是可靠且精确的序列键入;但是,它们的昂贵,具体取决于测序的质量并要求更高的计算技能。在过去十年中,基于飞行质谱(MALDI-TOF MS)物种鉴定的基质辅助激光解吸时间已成功地用于快速区分ACB复合物。MALDI键入非常快,更容易,便宜,并且与分子方法一样可靠。人工智能和机器学习的应用可能在克隆序列类型(ST)级别的标识中很有用。应变水平A. Baumannii识别置信度在增加了具有明确定义的分离株的内部参考光谱时提高了现有数据库。流动性分类学分类正在发展,正在描述更新的ST;因此,建立鲍曼尼曲霉参考光谱的中央存储库将有助于整个实验室协调,并在“一个健康”的观点上对鲍曼尼a。a。baumannii的全球级别监视计划有助于。本评论阐明了与鉴定活杆菌所采用的技术以及MALDI-TOF MS的潜在应用和未来观点有关的挑战。
摘要结核病(TB)和人类免疫症病毒(HIV)是菲律宾的两个主要公共卫生紧急情况。尽管全国性的努力和减轻该疾病的倡议,该国在结核病发生案例中排名第四。同时,菲律宾的艾滋病毒在亚洲和太平洋地区的流行最快。TB-HIV双重流行病形成了致命的组合,从而增强了彼此的进步,推动了免疫反应的恶化。为了理解共同感染的和epidemiologicalpatternsoftection,开发了TB-HIV的分室模型。一类患有艾滋病毒(PLHIV)的人不知道自己的艾滋病毒状况已纳入模型。这些不寻求医疗的不知道的PLHIV是新的HIV感染的潜在来源,可能会显着影响疾病传播动力学。灵敏度分析,以评估对兴趣输出影响的模型参数。使用TB,HIV和TB-HIV上的可用菲律宾数据对模型进行校准。参数的参数包括结核病和艾滋病毒的传播速率,从暴露到活动性结核病的进展速率,以及从艾滋病毒的TB lantent到艾滋病阶段的艾滋病毒的主动感染性结核。进行不确定性分析以确定估计值的准确性。
摘要:基于车辆动态模型 (VDM) 的导航性能在很大程度上取决于先验未知的气动系数的准确确定。在不同的技术中,例如模型模拟或风洞中的实验分析,通过有利于全球导航卫星系统 (GNSS) 定位的状态空间增强进行自校准的方法是一种有趣且经济的替代方案。我们在模拟下研究这种技术,目的是确定飞机机动对气动系数之间以及与其他误差状态的精度和(去)相关性的影响。不同机动的组合表明对于获得令人满意的气动系数估计并减少其不确定性至关重要。
多电技术的快速发展使得飞机可选的电源和作动器类型越来越丰富,这使得机载作动系统架构优化过程中不同电源和作动器的组合变得极其复杂。传统的“试错”法已不能满足设计要求。本文首先介绍了多电飞机(MEA)飞行控制作动系统(FCAS)的组成,并计算了可能的架构数量。其次,从安全可靠性、重量和效率等方面提出了FCAS架构的评价标准,并计算了各操纵面采用相同作动器配置情况下的评价标准值。最后,应用遗传算法(GA)获得了MEA FCAS架构的优化结果。与传统仅采用伺服阀控液压作动器的作动系统架构相比,优化后的多电作动系统架构重量可减轻6%,在满足安全可靠性要求的基础上效率可提高30%。
我们研究了开发决策支持系统 (DSS) 的可能性,该系统集成了眼球注视测量,以便更好地调整其建议。事实上,眼球注视可以洞察人类的决策:个人倾向于更加关注与他们即将做出的选择一致的关键信息。因此,眼球注视测量可以帮助 DSS 更好地捕捉决定用户决策的背景。22 名参与者进行了简化的空中交通管制 (ATC) 模拟,他们必须根据屏幕上显示的特定参数值决定接受或修改路线建议。记录了每个参数的决策和注视时间。算法使用用户注视时间来估计每个参数对其决策的效用。在此训练阶段之后,算法立即在两种条件下生成新的路线建议:1) 考虑参与者的决策,2) 使用显示参数上的停留时间测量,考虑参与者的决策及其视觉行为。结果表明,在考虑参与者的决策时,系统建议比基础系统更准确,使用他们的停留时间甚至更准确。使用眼动仪捕捉决策的关键信息加速了 DSS 的学习阶段,从而有助于进一步提高连续建议的准确性。此外,探索性
飞机使用不同类型的执行器。它们充当电能与机械能的转换器。这些元件用作调整武器和登机设备(例如用于开放式装载机)以及飞机飞行控制系统的直接元件。液压执行器在过去几年中占据主导地位。它们确保强大的力量,并且具有良好的质量和能量比例。第二次世界大战后,飞机配备了飞行控制系统。该系统在飞行过程中为飞行员提供支持。飞机经常使用混合执行器系统。机电执行器用作前置放大器。它们改变电控制信号以移动执行器的推力管。机电执行器移动液压缸的选择阀,液压缸的活塞改变飞机的控制面。液压执行器用作功率放大器。现在,混合系统由电液执行器取代。前置放大器和功率放大器制成一个单元。有一个电控制信号,并通过流体执行器的活塞产生强大的力量。最近,飞机一直在采用多电动飞机 (MEA) 概念下的技术进行设计。该技术假设在机载系统中使用更多电气元件,以减轻气动和液压管道的重量,更易于维护,最终提高飞行安全性。在实际应用中,MEA 技术
无限校园调查设计师允许用户不仅向学生,而且向父母/监护人和/或员工发送调查。这些调查可以保存以供将来使用,并且可以根据如何设置调查来识别响应或匿名。,如果用户希望重复调查,它还可以给出多个响应。调查创建者可以为各种类型的数据需求选择各种响应选择,例如单个条目,复选框,无线电和下拉列表。在格式化问题时也有几个选项,例如添加徽标和自定义URL,有条件的格式,可以跳过下一个问题或取决于回答,并且可以在必要时添加一个计时器。有关调查设计师的更多信息或如何开始创建自己的调查,请查看Infinite校园调查设计师 - 视频系列。